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Abstract 

Alzheimer’s disease (AD) is a neurodegenerative disorder influenced by both genetic and environmental factors. 
Identifying therapeutic targets and interventions remains challenging. This study utilized Mendelian Randomization 
(MR) to investigate causal relationships between plasma proteins, lifestyle factors, and AD, along with virtual screen-
ing to identify potential drug compounds. A two-sample MR analysis assessed associations between plasma proteins, 
identified through genome-wide association studies (GWAS), and AD risk. Co-localization analysis (CA) confirmed 
the overlap between protein expression and AD susceptibility loci, and reverse MR ruled out reverse causality. A pro-
tein–protein interaction (PPI) network was constructed to explore therapeutic targets, followed by virtual screening 
to identify small-molecule inhibitors for selected proteins. The analysis found significant associations between eight 
plasma proteins and AD, with five proteins (GSTP1, BIN1, Siglec-3, SERPINF2, and GRN) showing strong evidence 
of involvement in AD pathogenesis. Virtual screening identified six compounds as potential inhibitors of GSTP1 
and four compounds as potential inhibitors of BIN1. Furthermore, MR analysis of lifestyle factors, such as dietary 
behaviors and smoking cessation, indicated they may influence AD risk through their effects on specific proteins. 
These findings offer novel insights into the genetic mechanisms underlying AD and highlight the potential of com-
bining MR with virtual screening to identify therapeutic targets. The study also suggests that lifestyle modifications 
could offer alternative prevention and treatment strategies for AD. Future research should focus on the experimental 
validation of the identified compounds and further explore the mechanisms linking lifestyle factors to AD.

Keywords Alzheimer’s disease, Plasma protein, Drug targets, Bioinformatics, Mendelian randomization analysis

Introduction
Alzheimer’s disease (AD) is a progressive and irrevers-
ible neuro degenerative disorder that affects cognition, 
function, and behavior [1]. It is classically characterized 
by two hallmark brain pathologies: β-amyloid plaque 
deposition and neurofibrillary tangles of hyperphos-
phorylated tau [2]. AD is the leading cause of dementia, 
responsible for over half of all cases. Alzheimer Disease 
International estimated a global prevalence of 50 million 
cases and approximately 10 million new cases of demen-
tia in 2015. By 2050, the number of dementia patients is 
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projected to reach 152 million globally, with the largest 
increase anticipated in developing countries [3]. Herit-
able factors contribute to 60–80% of the risk of develop-
ing AD. PSEN1, PSEN2, APP, and SORL1 are identified 
as causative genes, while one or two alleles of APOE4 are 
recognized as risk factors [4].

The pathogenesis of AD is multifaceted. At the pro-
tein level, a network module associated with glucose 
metabolism has emerged as one of the most significantly 
linked to AD pathology and cognitive impairment. Pro-
teins from this module are elevated in cerebrospinal fluid 
during the early stages of the disease [5]. Additionally, 
plasma circulating proteins may serve as markers of vas-
cular dysfunction, a component long assumed essential 
to AD pathophysiology [6]. Recently, genome-wide asso-
ciation studies (GWAS) have gained significant atten-
tion. For example, a multicenter GWAS identified five 
loci with significant genome-wide associations with cer-
ebrospinal fluid (CSF) profiles, two of which were novel: 
rs145791381 (inflammation) and GRIN2D (synaptic 
functioning) [7]. Protein quantitative trait loci (pQTLs) 
are genetic regions associated with changes in protein 
expression levels. Trans-pQTLs tend to be tissue-spe-
cific, while cis-pQTLs are more likely to be tissue-shared. 
Previous studies have examined the associations between 
cis-pQTLs and various conditions, including inflamma-
tory bowel disease [8], IgA nephropathy [9], heart fail-
ure [10], ischemic stroke [11], type 1 diabetes [12], and 
psychiatric disorders [13]. However, the associations 
between cis-pQTLs and AD remain largely unexplored. 
Understanding these associations could help elucidate 
the complex mechanisms of this chronic neuro degen-
erative disease and aid in the development of targeted 
therapies.

MR could serve as a valuable method to evaluate causal 
relationships between cis-pQTLs and AD, addressing 
common limitations in classical epidemiological studies, 
such as confounding factors and reverse causation [14]. 
MR utilizes genetic variants specifically associated with a 
putative exposure as instrumental variables, allowing for 
inferences about the causal effect of that exposure on an 
outcome [15]. Due to the random assortment of alleles 
at conception, the distribution of genetic variants asso-
ciated with a particular exposure is largely independent 
of confounding factors in conventional observational 
analyses [16]. Therefore, MR estimates are less influenced 
by environmental confounding factors and can provide 
more reliable insights into causal relationships between 
risk factors and disease outcomes compared with classi-
cal epidemiological studies. Moreover, since an individ-
ual genotype is determined at conception and remains 
unaffected by subsequent disease outcomes, the direction 
of causation is inherently from the genetic variant to the 

trait of interest, eliminating the potential for reverse cau-
sation [14]. Consequently, MR can be employed in this 
study to examine the causal effects between plasma cir-
culating proteins (exposure) and AD (outcome).

Computer-aided virtual screening (VS) is an emerg-
ing and powerful method for identifying potential drug 
candidates from large chemical libraries. It utilizes com-
puter-based algorithms to predict the binding affinity of 
compounds to a target protein without requiring physical 
experiments [17]. This approach significantly reduces the 
time and costs associated with traditional drug discovery 
processes. VS techniques can be broadly categorized into 
three types: ligand-based, structure-based, and pharma-
cophore-based screening. Ligand-based methods focus 
on the properties of known active compounds, while 
structure-based methods require the three-dimensional 
(3D) structure of the target protein. Pharmacophore-
based screening, by contrast, identifies the essential fea-
tures of a molecule necessary for the desired biological 
activity. The process begins with preparing a database 
containing thousands or even millions of chemical com-
pounds. These compounds are then subjected to various 
filters and scoring functions to rank them based on their 
predicted interactions with the target. The top-ranked 
compounds are subsequently selected for evaluating their 
binding patterns with target proteins.

In addition to pharmaceutical therapies, lifestyle 
factors such as dietary interventions, alcohol 
consumption, and smoking may play significant roles 
in the prevention or treatment of AD. Nutrient-dense, 
healthy dietary components are recognized for their 
ability to modulate the immune system and potentially 
alter the neuroinflammatory processes linked to the 
progression of AD and cognitive decline [18]. These 
dietary modifications and nutraceuticals may be effective 
strategies for halting the onset of AD or preventing 
cognitive decline [19]. However, some well-known 
dietary interventions remain controversial. Long-chain 
omega-3 polyunsaturated fatty acids (PUFAs) have been 
associated with a reduced risk of cognitive impairment 
in individuals without dementia [20]. However, a 
randomized, placebo-controlled trial reported that long-
term use of omega-3 PUFA supplementation, with or 
without multidomain intervention, had no significant 
impact on cognitive decline over more than three years 
[21]. Furthermore, the relationship between alcohol 
consumption and AD varies depending on the amount 
consumed. Low to moderate ethanol concentrations have 
been reported to protect against β-amyloid (Aβ) toxicity 
in hippocampal neurons, while excessive ethanol intake 
increases Aβ accumulation and Tau phosphorylation 
[22]. The association between smoking and AD is 
supported by Level B evidence, suggesting a weak 
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correlation [23]. Investigating the relationships between 
lifestyle factors and AD-related proteins may provide 
novel insights into the regulatory mechanisms underlying 
lifestyle interventions.

The primary objective of this study is to identify plasma 
circulating proteins as potential therapeutic targets for 
AD and to virtually screen new small-molecule drug can-
didates. The secondary objective is to explore the rela-
tionships between common healthy lifestyle factors and 
the AD-related proteins identified in previous studies.

Methods
Study design
This study initially explored the association between 
plasma circulating proteins and AD using a two-sample 
MR analysis. To verify the causality of this association, 
we employed CA to evaluate the spatial overlap between 
circulating proteins and susceptibility to AD. A reverse 
MR analysis was conducted to exclude the possibility of 
reverse causality. Subsequently, we performed protein 
interaction network analysis to identify potential protein 
interactions and, combined with drug efficacy evalua-
tion, prioritized potential therapeutic targets. Based on 
the structure of the selected target protein, VS was con-
ducted within a library of small molecule compounds. 
Finally, using systematic MR, we analyzed the relation-
ship between healthy lifestyle factors and AD-related 
proteins, aiming to identify key proteins that could serve 
as targets for lifestyle interventions.

Data sources
Acquisition of cis‑pQTL exposure data
We obtained high-quality proteomic data for 4907 
proteins and their corresponding target genes from a 
large-scale GWAS conducted on 35,559 Icelandic indi-
viduals [24]. Measure using 4907 aptamers from Soma-
Logic, standardize data to correct for technical bias and 
batch effects. Potential regulatory variations have been 
identified, including cis pQTLs (located near coding 
genes) and trans pQTLs (located far from genes), high-
lighting their association with complex diseases such as 
cardiovascular and metabolic disorders. Genotyping was 
performed using Illumina chips, covering both common 
and rare variations, and strict quality control and impu-
tation were performed to ensure data integrity [24]. To 
address the issue of linkage disequilibrium (LD), SNPs 
were pruned to ensure independence. Cis-pQTLs meet-
ing the following criteria were prioritized as instrumen-
tal variables for MR analysis: 1) located within a ± 1 Mb 
window of the gene transcription start site; 2) genome-
wide significance (P < 5 × 10^−  8); 3) linkage disequi-
librium independence  (r2 < 0.1); and 4) clumping with a 

10,000 kb window. This robust approach identified many 
cis- pQTLs as key regulatory variations (Supplementary 
Table 1).

Acquisition of lifestyle factors exposure data
Data on lifestyle factors was obtained from the IEU open 
GWAS project and systematically included variables 
such as alcohol intake, meat intake, cooked vegetable 
intake, green tea intake, bread intake, crisp intake, bat-
tered fish intake, cheese intake, cereal intake, dried fruit 
intake, fruit smoothie intake, sweetened cereal intake, 
oily fish intake, milk intake, water intake, sleep dura-
tion, and smoking status (Supplemental Table  2). The 
GWAS data was obtained online by R software using the 
“TwoSampleMR” package (0.6.6) based on the ID pro-
vided in Supplemental Material 2, under the condition of 
P < 1 × 10^− 5,  r2 < 0.001, clump = 10000kb.

Acquisition of AD outcome data
The phenotype based on health registration (endpoint) 
in Finnish data is created by combining data from one 
or more national health registrations, primarily using 
classification codes from the International Classification 
of Diseases (ICD) and Anatomical Chemotherapy 
(ACT). For the entire GWAS, over 2800 endpoints were 
initially constructed by combining data from different 
health registrations, including discharge registration, 
prescription drug purchase registration, and cancer 
registration. To study the genetic ancestral data of 
224,737 FinnGen participants through genotyping quality 
control, FinnGen data was combined with 2504 Phase 
3 reference samples from the 1000 Genomes Project, 
and principal component analysis (PCA) was used to 
identify FinnGen participants with non-Finnish genetic 
ancestors. Research has found that most participants 
have extensive Finnish ancestry; Out of 224,737 outliers, 
3676 (1.63%) were removed. In data processing, 5780 
duplicate items and monozygotic twins (one randomly 
removed per pair), as well as genetic population outliers, 
were removed, and a set of approximately unrelated 
individuals was established, where any relationships 
between pairings were at the third or higher level. A total 
of 156,977 independent individual data were obtained 
for calculating PCA, and 61,980 related individual data 
were projected onto these principal components (PCs). 
AD is defined as a progressive, neurodegenerative disease 
characterized by loss of function and death of nerve cells 
in several areas of the brain, leading to loss of cognitive 
function [25]. AD patients were determined based on 
ICD, 10th Revision (ICD-10). AD data was obtained from 
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the latest FinnGen R11 release, which includes 11,755 
European cases and 441,978 European controls [26].

Database for searching for protein–protein interactions
The search tool for the retrieval of interacting genes/pro-
teins (STRING) database (version 12) was prepared to 
collect information on protein–protein interactions.

Compounds library for virtual screening
The Chemdiv 3D-Pharmacophore Based Diversity 
Library, containing 52,000 compounds, was set up for 
virtual screening.

Statistical analysis
All MR-related statistical analyses were conducted using 
R software, version 4.3.2.

Primary MR analysis
MR is a method that uses genetic variations as instru-
mental variables to evaluate the causal relationship 
between exposure factors and outcomes. In the two-sam-
ple MR, the exposure and outcome data come from dif-
ferent independent samples, which avoids the influence 
of measurement errors in the same sample and enhances 
statistical efficiency. MR has three major hypotheses: 
correlation hypothesis, independence hypothesis, and 
exclusivity hypothesis. We chose SNPs (P < 5 × 10 ^ − 8) 
and F > 10 as instrumental variables to ensure the robust-
ness of the instrumental variables. The instrumental vari-
ables are not related to confounding factors. To minimize 
horizontal pleiotropy, we only use genetic variations 
in the cis region. Further, evaluate the validity of this 
hypothesis through heterogeneity testing and bidirec-
tional MR analysis (to detect reverse causality). To verify 
the effectiveness of instrumental variables, we conducted 
weak instrumental testing (F-statistic > 10) and evaluated 
potential level pleiotropy using MR Egger regression. The 
results showed that there was no horizontal pleiotropy in 
the positive results.

In this study, the ’TwoSampleMR’ R package was used 
to perform MR analysis of cis-pQTLs and Alzheimer’s 
disease. For cis-pQTLs with only one SNP, Wald ratio 
results were used as the standard. For cis-pQTLs with 
more than one SNP, inverse-variance weighting (IVW) 
was the preferred method [27]. Odds ratios (OR) for 
increased AD risk were expressed per standard deviation 
(SD) increase in plasma protein levels. False discovery 
rate (FDR) correction was applied to adjust for multiple 
testing, with a threshold p-value of 0.05 used to prioritize 
results for further analysis.

Co‑localization analysis
Bayesian CA was employed to assess the probability that 
two traits share the same causal variant. This method 
provides the posterior probability for five hypotheses 
regarding whether a single variant is shared between two 
traits. The posterior probability of hypothesis 0 (PPH0) 
represents that SNPs within the CA region are not related 
to either trait. The posterior probability of hypothesis 1 
(PPH1) represents SNPs within the CA region that are 
related to the first trait but not to the second trait, while 
the Posterior probability of hypothesis 2 (PPH2) repre-
sents SNPs within the CA region that are related to the 
second trait but not to the first trait. The posterior prob-
ability of hypothesis 3 (PPH3) represents a relationship 
between SNPs and two personality traits within the CA 
region but not the same locus. The posterior probabil-
ity of hypothesis 4 (PPH4) represents that SNPs and two 
personality traits within the CA region are related and 
share the same locus [27]. We used the ’coloc’ R pack-
age to investigate whether the identified AD-related 
proteins and corresponding AD were associated with 
common causal variants and to distinguish confound-
ing linkage disequilibrium (LD). We tested PPH3, where 
both the protein and AD are associated with the region 
by different variants, and PPH4, where both are associ-
ated with the region by shared variants. Strong evidence 
of CA was considered when the posterior probability 
of PPH4 exceeded 0.75 in different windows or when 
PPH3 + PPH4 exceeded 0.8.

Protein–protein interaction network
We first utilized DrugBank to collect drug targets asso-
ciated with AD treatment. Proteins targeted by drugs or 
ingredients approved for AD treatment were classified 
as drug targets. Drug information for these identified 
proteins was recorded. Next, we compiled information 
on potential targets that passed our FDR correction and 
CA validation. Subsequently, a protein–protein interac-
tion (PPI) network was constructed using the STRING 
database (version 12) with a minimum interaction score 
threshold of 0.4. [28]. We aimed to investigate the inter-
actions among the potential targets and to determine 
whether existing drug targets influence our predicted 
potential targets.

Virtual screening
To identify small molecule compounds for potential tar-
gets, we used Schrödinger Maestro for structure-based 
virtual screening. For GSTP1 inhibitors, the virtual 
screening model was derived from the PDB database 
(PDB ID: 3DGQ). As to BIN1 inhibitors, the model of 
virtual screening is derived from the PDB database(PDB 
ID: 2FIC), and SiteMap was used to predict the most 



Page 5 of 15Sun et al. Biological Research           (2025) 58:19  

likely binding site for virtual screening since there is 
no small molecule binding site for BIN1. The Chemdiv 
3D-Pharmacophore Based Diversity Library was pre-
pared for virtual screening following energy optimization 
using Schrödinger’s LigPrep module. These optimized 
compounds were then subjected to the Virtual Screening 
Workflow for molecular docking. Initial screening was 
performed using the High-Throughput Virtual Screen-
ing (HTVS) protocol to rapidly filter out compounds 
with low binding affinity. Next, compounds that passed 
the HTVS stage were subjected to Standard Precision 
(SP) docking to refine rankings based on more accu-
rate scoring functions and to further narrow down the 
list of potential hits. A subset of the top-ranked ligands 
from SP docking was then subjected to Extra Precision 
(XP) docking to obtain highly accurate binding poses 
and docking scores. Finally, the most promising and rep-
resentative compounds were selected through empirical 
visual inspection. The inclusion criteria were as follows: 
(1) Compounds representing different chemotypes to 
ensure a broad distribution across chemical space; (2) 
Compounds with high docking scores and reasonable 
docking poses; (3) Compounds that comply with Lipin-
ski’s Rule of Five. The exclusion criteria were as follows: 
(1) Compounds with poor synthetic feasibility; (2) Com-
pounds difficult to modify or optimize. The Docking 

Score could quantitatively evaluate the likelihood and 
affinity of small molecule compounds binding to tar-
get proteins. The lower the score, the more stable the 
combination. For the objects of virtual screening, from 
the results of primary MR Analysis and CA, we initially 
identified BIN1 and GSTP1 because they have a positive 
causal relationship with AD and are driven by the genetic 
variations shared by identified plasma proteins and AD. 
Most proteins do not have natural agonists, so the small 
molecules obtained by virtual screening are generally 
protein inhibitors. Therefore, we decided to search for 
potential inhibitors of BIN1 and GSTP1.

The impact of lifestyle on predicting protein targets
Additionally, we conducted an MR analysis on lifestyle 
factors and Alzheimer’s disease-related proteins to deter-
mine which proteins can be regulated through lifestyle 
interventions. The MR analysis method was consistent 
with that described for the primary MR analysis.

Results
MR of the whole proteome identified 8 AD‑related proteins
In the cis-pQTL analysis of Alzheimer’s disease, we 
preliminarily found a nominal association (P < 0.05) 
between 124 plasma proteins and Alzheimer’s disease. 
However, after adjusting for false discovery rate (FDR), 

Fig. 1 Analysis of the causal relationships between plasma circulating proteins and AD . A: The differences in plasma circulating protein levels. Up: 
Significantly increased proteins; Down: Significantly decreased proteins. B: The effect size of significant plasma circulating proteins on AD after FDR 
correction
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only 8 proteins showed a statistically significant 
correlation with Alzheimer’s disease (FDR < 0.05, 
Fig.  1A-B), including Glutathione S-transferase Pi 
(GSTP1), PILRA isoform FDF03-deltaTM; PILRA 
isoform FDF03-M14; GRN; α2-Antiplasmin (SERPINF2); 
MYZAP; BIN1; Siglec-3. 4 of 8 proteins are risk factors 
of AD while the other 4 proteins are protective factors. 
To be specific, incremental GSTP1 (OR = 1.62; 95% CI, 
1.31–2.01; P = 1.00 ×  10−5), MYZAP (OR = 2.43; 95% 
CI, 1.56–3.78; P = 4.13 ×  10−13), BIN1 (OR = 2.26; 95% 
CI, 1.82–2.82; P = 4.13 ×  10−13) and Siglec-3 (OR = 1.05; 
95% CI, 1.03–1.08; P = 6.19 ×  10−5) increased the risk 
of AD, whereas elevated SERPINF2 (OR = 0.61; 95% 
CI, 0.50–0.75; P = 3.02 ×  10−6), GRN (OR = 0.66; 95% 

CI, 0.58–0.76; P = 7.65 ×  10−7), PILRA isoform FDF03-
deltaTM (OR = 0.95; 95% CI, 0.93–0.97; P = 2.03 ×  10−5), 
PILRA isoform FDF03-M14 (OR = 0.95; 95% CI, 0.93–
0.97; P = 2.03 ×  10−5) decreased the risk of AD. These 
results suggest that these 8 proteins may play important 
roles in the pathogenesis of Alzheimer’s disease. Due to 
the presence of only 1–2 SNPs in most cases, there is 
no pleiotropy or heterogeneity. The detailed association 
results between all cis-pqtls and AD are attached 
(Supplemental Table 3).

Fig. 2 Analysis of co-localization A: BIN1; B: Siglec-3; C: GSTP1; D: SERPINF2; E: GRN



Page 7 of 15Sun et al. Biological Research           (2025) 58:19  

Proteins validated by colocalization analysis
Among the 8 AD-related proteins, 5 proteins showed 
strong CA evidence at different windows, including BIN1, 
Siglec-3, GSTP1, SERPINF2, and GRN (PPH4 > 0.75/
PPH3 + PPH4 > 0.8, Supplemental Table 4 and Fig. 2). To 
test whether the association between the five identified 
proteins and Alzheimer’s disease is through reverse 
causality, we further performed the reverse MR. After 
FDR correction, no statistically significant association 
was found (Supplemental Table 5).

Drug targets and PPI network construction
To further investigate the impact of existing drugs 
on AD, we identified five drugs currently used in AD 
treatment and their corresponding targets: Donepezil, 
Memantine Hydrochloride, Huperzine A, Galantamine, 
and Rivastigmine (Supplemental Table  6). Our analysis 
revealed that among the five selected targets, IL1B 
influences Siglec-3 and SERPINF2, while GLRA1 affects 
BIN1. Additionally, Siglec-3 and SERPINF2 interact with 

each other; however, GSTP1 and GRN are not influenced 
by any of these targets (Fig. 3). Consequently, we propose 
that Memantine Hydrochloride and Donepezil could 
serve as targeted therapies for the identified targets 
(Supplemental Table  7). Furthermore, the exploration 
of drugs targeting GSTP1 and BIN1 remains largely 
uncharted.

Virtual screening
For potential GSTP1 inhibitors, among the 720 
compounds subjected to visual inspection, 93 exhibited 
docking scores below -7, while 625 had scores between 
-7 and -5 (Supplementary 8). Ultimately, six promising 
compounds were identified: V006-7774, SD12-0025, 
F594-0362, F594-0830, Y041-8058, and V026-2799 
(Table 1). The 3D binding patterns of these compounds 
with GSTP1 are illustrated in Fig. 4. Compound V006-
7774 forms hydrogen bonds with Tyr7, Tyr108, Trp38, 
and Arg13, pi-pi interactions with Phe8, and salt bridges 
with Glu97. Compound SD12-0025 forms hydrogen 

Fig. 3 PPI network analysis of existing drug targets and predicted potential targets. Green lines neighborhood evidence; Blue lines: co-expression; 
Purple lines: protein homology; Yellow lines: text mining; Black lines: co-occurrence; Light blue lines: the interaction is curated from external 
databases
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Table 1 Identified Small Molecules as Potential GSTP1 and BIN1 Inhibitors

Targets ID Structure Formula Molecular
Weight (Dalton)

Docking Score

GSTP1 V006-7774 466.606 − 8.391

SD12-0025 374.400 − 8.360

F594-0362 425.354 − 7.865

F594-0830 467.459 − 7.481

Y041-8058 393.442 − 7.408

V026-2799 559.598 − 7.151

BIN1 8012–8955 390.265 − 6.130

Y500-7024 333.316 − 5.491

Y042-2962 339.374 − 5.465
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bonds with Tyr7, Leu52, Tyr108, Asn204, and Arg13, as 
well as a pi–pi interaction with Phe8. Compound F594-
0362 forms hydrogen bonds with Arg13, Tyr7, and 
Gln51, pi-pi interactions with Phe8, and salt bridges 
with Asp98. Compound F594-0830 forms hydrogen 
bonds with Arg13, Tyr7, and Gln64, pi-pi interactions 
with Phe8, pi-cation interactions with Tyr108, and salt-
bridging interactions with Asp98. Compound Y041-
8058 forms hydrogen bonds with Tyr7, Leu52, and 
Arg13, as well as salt bridges with Glu97. Compound 
V026-2799 forms hydrogen bonds with Trp38, Arg13, 
Tyr108, and Gln51, pi-pi interactions with Phe8 and 
Tyr108, and salt bridges with Lys44.

As to potential BIN1 inhibitors, 268 compounds 
underwent visual inspection, and 40 had a docking 

score below -5. (Supplementary 9). Finally, four 
promising compounds were identified: 8012–8955, 
Y500-7024, Y042-2962, and 7627–0037 (Table  1). The 
3D binding patterns of these compounds with BIN1 
are illustrated in Fig. 5. The compound 8012–8955 can 
form hydrogen bonds with Tyr217 and Glu67, pi-pi 
interactions with Tyr78, and salt Bridges with Asp74. 
Y500-7024 can form hydrogen bonds with Tyr217 and 
Glu67, pi-pi interactions with Phe221, and pi-cation 
interactions with Arg70. Y042-2962 can form hydrogen 
bonds with Tyr217, pi–pi interaction with Phe221, salt 
bridges, and pi-cation interactions with Arg70. 7627–
0037 can form hydrogen bonds with Tyr217 and Glu67, 
pi-pi interactions with Tyr78, and pi-cation interactions 
with Arg70.

Table 1 (continued)

Targets ID Structure Formula Molecular
Weight (Dalton)

Docking Score

7627–0037 282.302 − 5.325

Fig. 4 Binding patterns of promising small molecule compounds with GSTP1: A: V006-7774; B: SD12-0025; C: F594-0362; D: F594-0830; E: 
Y041-8058; F: V026-2799
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Impact of lifestyle factors on Ad‑related proteins
Among the 17 lifestyle factors and 5 proteins associated 
with AD identified previously through MR, 3 healthy 
lifestyle factors (Crisp intake, Dried fruit intake, and 
Smoking status: Never) were associated with 2 proteins 
(Supplemental Table 10, Supplemental Fig. 1). Specifically, 
crisp intake (Beta = − 0.30, P = 0.02) and smoking status 
(Never) (Beta = -0.22, P = 0.04) are negatively related with 
BIN1 while dried fruit intake(Beta = -0.23, P = 0.016) is 
negatively associated with SERPINF2.

Discussion
The detection of plasma proteins may indicate broader 
systemic processes associated with AD pathophysiol-
ogy, including neuroinflammation, oxidative stress, and 
metabolic dysregulation. As such, plasma proteins can 
serve as valuable biomarkers of disease states, offering 
accessible targets for therapeutic intervention. Although 
the primary pathological manifestations of AD occur 
within the brain, systemic alterations—such as those 

measurable in plasma—can influence disease progres-
sion. Consequently, plasma proteins present a potentially 
modifiable therapeutic pathway, particularly for strate-
gies targeting the peripheral regulation of neuro degen-
erative processes.

In this study, we employed MR to identify plasma cir-
culating proteins associated with AD, with five (GSTP1, 
BIN1, Siglec-3, SERPINF2, GRN) showing statistically 
significant associations with AD and strong evidence 
of CA, suggesting their potential causal roles in AD 
pathogenesis. Protein–protein interaction (PPI) analysis 
revealed interactions between identified targets and cur-
rent AD drug targets, highlighting GSTP1 and BIN1 as 
promising new targets for drug development. We prelim-
inarily conducted virtual screening and identified several 
potential small-molecule inhibitors.

Previous research results have shown that smoking 
is associated with AD neuropathology in preclinical 
models and humans. Smoking related oxidative stress 
in the brain is a potential mechanism that promotes AD 

Fig. 5 Binding patterns of promising small molecule compounds with BIN1: A: 8012-8955; B: Y500-7024; C: Y042-2962; D: 7627-0037



Page 11 of 15Sun et al. Biological Research           (2025) 58:19  

pathology and increases AD risk [29]. And our results 
found that quitting smoking may prevent AD by affecting 
BIN1 levels, which is consistent with previous findings. 
Previous studies have yielded contradictory results 
regarding the impact of dried fruit intake on AD. Deng’s 
study [30] found that an increase in dried fruit intake was 
associated with a decrease in AD risk, while Liao et al.’s 
study found a positive correlation between an increase in 
dried fruit intake and AD risk [29]. And our reduction in 
dried fruit intake may lower the risk of AD by affecting 
SERPINF2. We believe that the reason for this difference 
may be due to differences in sample size, or the types of 
dried fruits studied.

A “causality” identified by MR might be horizon-
tal pleiotropy, genetic confounding due to linkage dis-
equilibrium (LD), or reverse causality. To limit the bias 
from horizontal pleiotropy, we only used cis-pQTLs as 
the instruments, given their direct role in the transcrip-
tion and/or translation of related genes [31]. In addition, 
Bayesian CA was also used to exclude the bias introduced 
by LD. With PPH4 exceeding 0.75 in different windows or 
when PPH3 + PPH4 exceeding 0.8 as the critical thresh-
old for posterior probability, the five proteins identified 
were likely to share the same variant of AD [32]. Bidirec-
tional MR was conducted in the study and no proteins 
showed reverse causality.

Growing evidence suggests that variations and expres-
sion levels of multiple genes play a critical role in neu-
roinflammation and neuro degenerative processes within 
the pathophysiology of AD. GSTP1 is the most widely 
studied member of the GST family [33]. It is supposed 
to involve in metabolism, detoxification and elimination 
of potentially genotoxic foreign complexes, metabolizes 
a variety of carcinogenic compounds and protects cells 
against DNA damage and canceration [34]. However, 
it may play the villain in AD. In 2016, GSTP1 Ile105Val 
polymorphism was found to be associated with increased 
risk of AD [35]. Then, in 2017, a study reported that 
GSTP1 was involved in anxiety and depression behav-
iors in 10-month-old triple transgenic mice of AD, and 
melatonin could serve as a potential candidate drug to 
improve the neuropsychiatric behaviors in AD via modu-
lating the expression of the GSTP1 [36]. Our study fur-
ther proved that GSTP1 is positively associated with AD 
in humans, with one standard deviation (SD) increase 
raising the risk by 62%. BIN1, its down-regulation was 
founded to be related to cancer progression and also cor-
relates with ventricular cardiomyopathy and arrhythmia 
preceding heart failure while increased BIN1 expression 
maybe linked with increased susceptibility for AD [37]. A 
study investigated the role of BIN1 in regulating neuro-
inflammatory responses in microglia by employing vari-
ous molecular techniques, including immunostaining, 

RT-PCR, siRNA knockdown, and Cre-lox conditional 
deletion in both mouse and human models, with findings 
analyzed through gene expression panels, flow cytom-
etry, and pathway analysis. The result shows that BIN1 is 
primarily involved in clathrin-mediated endocytosis and 
has been implicated in the regulation of neuroinflamma-
tion through its role in microglial activation [38]. Our 
study quantitatively underscores the enormous risk of 
BIN1 protein level, showing that each SD increase raises 
the likelihood of AD by 126%. Furthermore, Siglec-3 
-related research has become a new hot topic. Siglec-3 is 
an immunomodulatory receptor expressed on microglia 
and is implicated in the inhibition of microglial-mediated 
clearance of Aβ. [39] Our study demonstrated the posi-
tive association between increased Siglec-3 protein level 
and AD risk, this could be explained as a stronger inhibi-
tory ability on Aβ clearance mediated by microglia, how-
ever, the effect size is relatively small. For every one SD 
increase of Siglec-3 in plasma concentration, the risk of 
AD merely increases by 3%. In contrast to these risk fac-
tors, GRN is a multifunctional protein involved in the 
regulation of neuroinflammation and the promotion of 
neuronal survival. Reduced GRN levels have been linked 
to increased neuroinflammation and neuronal death, 
contributing to the pathogenesis of AD [40]. GRN was 
identified as a protective factor as well in our research, 
with each standard deviation increase in plasma con-
centration reducing AD risk by 34%. In addition, a study 
assessed the methylation state of the brain’s DNA in rela-
tion to AD using 708 prospectively collected autopsied 
brains [41]. By comparison, although SERPINF2 has been 
mentioned in previous literature, its specific causal rela-
tionship with AD has not been clearly validated. There-
fore, our study provides causal evidence for SERPINF2 
protein as a potential regulatory factor for Alzheimer’s 
disease for the first time.

Despite advancements in therapies in recent years, cur-
rent treatment options for AD remain challenging. The 
pathophysiology of AD involves multiple complex pro-
cesses, with glutamatergic excitotoxicity recognized as 
a significant contributor to neuronal damage and death. 
The NMDA receptor, a subtype of glutamate receptors, 
is central to synaptic plasticity and cognitive functions, 
including learning and memory. In pathological condi-
tions, particularly in AD, excessive glutamate release 
leads to sustained activation of NMDA receptors. This 
chronic activation results in an influx of calcium ions 
into neurons, triggering a cascade of intracellular events 
that culminate in neuronal injury and apoptosis—a 
phenomenon known as excitotoxicity [42]. Memantine 
Hydrochloride exerts its therapeutic effects by acting as 
a non-competitive antagonist at the NMDA receptor, 
specifically binding to the NMDA receptor subunit 2B 
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(encoded by the GRIN2B gene). This action selectively 
blocks the prolonged calcium ion influx associated with 
excitotoxicity while preserving normal physiological syn-
aptic transmission, which is essential for cognitive func-
tion [43]. Protein–protein interaction analysis based 
on the STRING database identified GLRA1 as another 
target of Memantine Hydrochloride. Moreover, GLRA1 
and BIN1 appear to be connected within the network, 
suggesting a potential interaction or co-expression rela-
tionship. BIN1 is involved in membrane dynamics, 
particularly in endocytosis and membrane curvature, 
whereas GLRA1 is a component of the glycine receptor, 
a ligand-gated ion channel involved in inhibitory neuro-
transmission [38]. The association between GLRA1 and 
BIN1 may indicate a functional relationship in synaptic 
activity or neuronal signaling. BIN1’s role in membrane 
remodeling could influence the localization or traffick-
ing of GLRA1, thereby affecting glycinergic neurotrans-
mission. Additionally, Donepezil, a medication primarily 
used to treat cognitive symptoms in AD, mainly targets 
and inhibits acetylcholinesterase, an enzyme responsible 
for the breakdown of acetylcholine in the synaptic cleft 
[44]. Acetylcholine plays a critical role in memory forma-
tion and cognitive function, leading to improvements in 
symptoms such as memory, attention, and other cogni-
tive abilities. Interestingly, in our study, Donepezil was 
also determined to act on the IL1B target, and the corre-
lations between IL1B and Siglec-3, SERPINF2 were then 
identified. IL1B is a critical pro-inflammatory cytokine 
that plays a central role in the inflammatory response 
and is often involved in the pathogenesis of various dis-
eases, including autoimmune disorders [45]. The inter-
action between IL1B and Siglec-3, a sialic acid-binding 
immunoglobulin-like lectin primarily expressed on 
myeloid cells, suggests an underlying regulatory mecha-
nism in which Siglec-3 modulates IL1B-driven immune 
responses. This interaction potentially influences the acti-
vation state of myeloid cells during inflammation, high-
lighting the importance of Siglec-3 in immune regulation 
[46]. SERPINF2, also known as alpha-2 antiplasmin, is a 
serine protease inhibitor that primarily inhibits plasmin, 
the major enzyme responsible for fibrinolysis [47]. The 
interaction between IL1B and SERPINF2 implies a role 
in modulating inflammation-driven proteolytic activity, 
which could be particularly relevant in pathological con-
ditions where inflammation and fibrinolysis are closely 
linked, such as in tissue repair, or certain inflammatory 
diseases.

Furthermore, to the best of our knowledge, this is the 
first study to discover the positive causal association 
between GSTP1 and AD and no interactions between 
selected AD drug targets and GSTP1 were observed. 
GSTP1 plays a critical role in cellular detoxification 

by catalyzing the conjugation of glutathione to vari-
ous electrophilic compounds. Structurally, GSTP1 is 
a homodimer, with each subunit comprising approxi-
mately 210 amino acids. The enzyme’s structure features 
a highly conserved N-terminal domain that binds glu-
tathione and a more variable C-terminal domain respon-
sible for interacting with substrates [48]. The active site 
of GSTP1 is formed by a combination of residues from 
both domains, creating a catalytic pocket essential for 
its enzymatic activity. In fact, this detoxifying enzyme is 
over-expressed in erythrocytes when unusual amounts of 
toxins are present in the body [49]. Therefore, the reverse 
causality between GSTP1 and AD cannot be completely 
ruled out although no significant results were indicated 
in the reverse MR. More research is needed to elucidate 
the specific mechanism between GSTP1 and AD. None-
theless, we still did some virtual screening work to search 
for GSTP1 inhibitors as it is particularly promising in the 
context of cancer therapy, not just for AD treatment. The 
overexpression of GSTP1 has been associated with resist-
ance to chemotherapy, as it can detoxify chemothera-
peutic agents, reducing their efficacy [50]. Therefore, 
inhibitors targeting GSTP1 could potentially enhance 
the effectiveness of chemotherapy by preventing the 
enzyme from neutralizing these drugs. Six potential lead 
compounds for GSTP1 inhibitors were identified in our 
study, and more experiments including Enzyme-Linked 
Immunosorbent Assay (ELISA) and Surface Plasmon 
Resonance (SPR) are needed to further evaluate these 
intermolecular interactions.

Currently approved AD treatment drugs only pro-
vide symptomatic benefits. Emerging epidemiological 
and clinical studies suggest that lifestyle changes offer 
an alternative therapeutic route for slowing cognitive 
decline and AD development [51]. For example, adher-
ence to a Mediterranean diet, including core foods such 
as fish, olive oil, fruit, and green leafy vegetables, may 
reduce the risk of AD [52]. Crisp foods generally refer to 
vegetables and fruits, which have a crisp and refreshing 
taste and are rich in fibre, vitamins, and minerals. In our 
study, more crisp food intake was significantly associated 
with lower BIN1 levels and thus could be a protective life-
style factor of AD. This may be related to the involvement 
of vitamins in crisp foods in alleviating oxidative stress 
processes. Conversely, dried fruit intake was found to be 
negatively associated with SERPINF2, thus a risk lifestyle 
factor of AD. This result is consistent with a recently pub-
lished MR study [53], and our findings may contribute 
to explaining the mechanism of more dried fruit intake 
increasing AD risk. For addictive behaviours, drinking 
and smoking are the focus of attention. Literature indi-
cates that former/active smoking is related to a signifi-
cantly increased risk for AD [29], while the relationships 
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between alcohol drinking has dose-related associations 
with AD [22]. In our study, alcohol intake was not found 
to be related to AD, while never smoking is identified as 
a protective lifestyle factor for AD, with never-smokers 
having relatively lower BIN1 protein levels.

This study possesses several strengths. First, it employs 
a comprehensive methodology that combines MR, CA, 
PPI network construction, and virtual screening, allow-
ing for a thorough investigation of potential therapeutic 
targets for AD. Second, five plasma proteins were identi-
fied as targets significantly associated with AD, particu-
larly GSTP1 and BIN1, which have not been extensively 
studied in the context of AD. Third, the successful vir-
tual screening identified six promising compounds as 
potential GSTP1 inhibitors, highlighting the utility of 
computer-aided drug discovery in identifying therapeu-
tic candidates. Furthermore, the study offers valuable 
insights into the influence of lifestyle factors on AD risk, 
suggesting that behaviors such as increased intake of 
crisp foods and smoking cessation may mitigate AD risk 
through their impact on specific proteins. Finally, the 
study’s rigorous validation techniques, including Bayes-
ian CA and reverse MR, enhance the credibility of these 
findings, demonstrating the interdisciplinary impact of 
integrating genetic, proteomic, and virtual screening 
approaches to advance the understanding of AD patho-
genesis and identify new therapeutic strategies.

However, this study is not without limitations. First, all 
investigated plasma circulating proteins had only one or 
two cis-acting SNPs and lacked trans-pQTLs, which lim-
ited the application of various analyses, including alterna-
tive MR algorithms, as well as tests for heterogeneity and 
pleiotropy. Second, this study primarily utilized genetic 
data from European populations, and it was difficult 
to generalize the results to other ancestries. Variations 
in genetic architecture across populations could result 
in different associations between cis-pQTLs and AD, 
thereby affecting the broader applicability of the study’s 
results. Third, despite the identification of highly prom-
ising small-molecule compounds through virtual screen-
ing, the lack of experimental validation due to inherent 
limitations in conditions remains a drawback. Finally, the 
datasets selected in this article are all European datasets, 
and the final research results may not be applicable to 
non-European populations. In future research, we will 
continuously expand the data sources to improve the 
generalizability and applicability of the research results.

Conclusion
In summary, this study identified five plasma proteins 
(GSTP1, BIN1, Siglec-3, SERPINF2, and GRN) as poten-
tial therapeutic targets for AD using MR and CA. GSTP1 
and BIN1 were highlighted as novel promising targets, 

with virtual screening identifying a total of ten potential 
inhibitors. Additionally, lifestyle factors, including crisp 
food intake, dried fruit intake and smoking cessation 
were found to influence AD risk through their effects on 
specific proteins. These findings provide a strong foun-
dation for further research into targeted therapies and 
preventive strategies for AD, though more experimental 
validation is needed.
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