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[3]. In addition to H. pylori infection, various factors con-
tribute to the risk of GC, including age, socioeconomic 
status, smoking, alcohol consumption, family susceptibil-
ity, history of gastric surgery, and malignancy-associated 
anemia. Adopting preventive measures such as reducing 
salt and salty food intake, along with increasing the con-
sumption of fruits and vegetables, can play a significant 
role in lowering the risk of GC [4].

Surgery remains the cornerstone of therapeutic inter-
ventions for GC, providing the most effective means of 
tumor therapy [5]. However, for patients who are deemed 
ineligible for surgical intervention due to advanced 
disease stage, comorbidities, or other factors, tumor 
immunotherapy have emerged as promising avenues 
[6]. Among these modalities, PD-L1 (programmed cell 
death ligand 1) and PD-1 (programmed death 1) inhibi-
tors have demonstrated promising anti-tumor immune 
effects in immunotherapy [7]. The PD-1 gene, also known 

Introduction
Gastric cancer (GC) is the fifth most common cancer 
and the third most common cause of cancer death glob-
ally [1]. The incidence and mortality rates of GC are sig-
nificantly higher in certain regions, particularly East Asia, 
Eastern Europe, and South America. While developed 
nations have experienced a decline in GC incidence rates, 
the demographic aging of populations may potentially 
lead to future escalations in the prevalence of this disease 
[2]. Infection with Helicobacter pylori (H. pylori) is a sig-
nificant risk factor for non-cardia GC. Eradication ther-
apy for H. pylori has been shown to reduce the risk of GC 
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Abstract
In the progression of gastric cancer (GC), various cell types in the tumor microenvironment (TME) exhibit 
upregulated expression of programmed death ligand 1 (PD-L1), leading to impaired T-cell function and evasion 
of immune surveillance. Infection with H. pylori and EBV leads to increased PD-L1 expression in various cell types 
within TME, resulting in immune suppression and facilitating immune escape of GC cells. In the TME, mesenchymal 
stem cells (MSCs), M1-like tumor-associated macrophages (MI-like TAM), and myeloid-derived suppressor cells 
(MDSCs) contribute to the upregulation of PD-L1 expression in GC cells. Conversely, mast cells, M2-like tumor-
associated macrophages (M2-like TAM), and tumor-associated neutrophils (TANs) exhibit elevated levels of 
PD-L1 expression in response to the influence of GC cells. Together, these factors collectively contribute to the 
upregulation of PD-L1 expression in GC. This review aims to provide a comprehensive summary of the cellular 
expression patterns of PD-L1 in GC and the underlying molecular mechanisms. Understanding the complex 
regulatory pathways governing PD-L1 expression may offer novel insights for the development of effective 
immunotherapeutic interventions.
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as cluster of differentiation 279 (CD279), can be found 
on chromosome 2q37 [8]. The expression of PD-1 sup-
presses various immune cell subsets in the TME, includ-
ing T cells, B cells, natural killer cells, macrophages, and 
dendritic cells [9–12]. When PD-1 binds to its ligand 
PD-L1, it inhibits the activity of T cells, allowing tumor 
cells to escape immune surveillance [13].

A significant body of clinical research has confirmed 
the benefits of combined PD-1 immune checkpoint 
inhibitors and chemotherapy in the treatment of GC. For 
instance, the CheckMate 649 trial compared nivolumab 
combined with chemotherapy to chemotherapy alone. 
The results demonstrated a significant improvement 
in overall survival with nivolumab plus chemotherapy. 
And nivolumab plus chemotherapy has become the new 
standard first-line treatment for previously untreated 
patients with advanced gastric, gastro-esophageal junc-
tion, or esophageal adenocarcinoma [14]. Furthermore, 
the ORIENT-16 trial compared the overall survival of 
patients receiving sintilimab plus chemotherapy to those 
receiving placebo plus chemotherapy. In patients with 
unresectable locally advanced or metastatic gastric and 
gastro-esophageal junction adenocarcinoma receiving 
first-line chemotherapy, sintilimab significantly improved 
the overall survival for all patients as well as those with a 
PD-L1 combined positive score (CPS) of 5 or more when 
compared to placebo [15]. These findings collectively 
demonstrate the substantial clinical efficacy of PD-1 
immune therapy in combination with chemotherapy for 
GC, offering promising prospects for the treatment of 
this malignancy.

This article aims to provide a comprehensive review 
of various factors and related mechanisms that contrib-
ute to the upregulation of PD-L1 expression in GC. By 
understanding these factors and mechanisms, we can 
gain insights into potential therapeutic targets that help 
overcome immune escape in GC and improve treatment 
outcomes.

Pathogen
Epstein-Barr virus (EBV)
EBV is a member of the herpes virus family, which is 
associated with the development of GC. The Cancer 
Genome Atlas (TCGA) proposes the four molecular clas-
sifications of GC: EBV-positive, microsatellite instability 
(MSI), genomically stable and chromosomal instability 
[16], and the EBV-associated GC (EBVaGC) accounts for 
about 10% [16]. In a prospective phase 2 clinical trial, the 
overall response rate of pembrolizumab is observed as 
100% in all EBV-positive metastatic GC [17]. Moreover, 
EBVaGC displayed the higher expression of PD-L1/L2 
[18–20], extensive MSI and aberrant CpG hypermethyl-
ation [21, 22], and rare TP53 mutations [23].

Recently, researchers pay more attention to the EBV 
mediated immune escape in GC. Zeng and colleagues 
found that 2 of 44 EBV-coding-miRNAs upregulates 
the expression of PD-L1, leading to the T cell apopto-
sis and tumor immune escape [24]. EBV-miR-BART11 
decreases the expression of FOXP1 by binding directly 
to the 3′-UTR of FOXP1 mRNA, which removes FOXP1 
mediated inhibition of PD-L1 expression, eventually 
leading to upregulation of PD-L1 [24]. Meanwhile, EBV-
miR-BART17-3p also promoted PD-L1 transcription by 
targeting PBRM1 [24]. Besides, EBV-miR-BART5-5p 
decreases the expression of PIAS3, which abolishes the 
PIAS3 mediated inhibition of STAT3 phosphorylation, 
resulting in the upregulation of PD-L1 finally [25]. EBV 
nuclear antigen 1 (EBNA1), expresses in all EBVaGC 
cells and functions as a transcriptional factor, regulates 
expression of EBV genes and host cellular genes [26, 
27]. In three EBV (+) GC cell lines (SNU-719, YCCEL1 
and NCC-24), both proteins and mRNAs of PD-L1 were 
positively correlated with EBNA1 levels. In vitro, EBNA1 
cooperated with IFN-γ activates the JAK2 / STAT1 / 
IRF-1 signaling pathway, which promotes IRF-1 mediated 
transcription of PD-L1 by binding to its promoter (-171 
~ -159) [28]. Meanwhile, infection of EBV also increases 
the IFN-γ production by activating IRF3 [29]. EBV-
encoded small RNAs (EBERs) are recognized by Retinoic 
acid-inducible gene I (RIG-I), which initiates IRF3 and 
NF-κB signaling pathways, leading to induction of IFNs 
[30]. Zeng et al. found that EBV-encoded circBART2.2 
upregulates PD-L1 expression by promoting IRF3 and 
NF-κB to bind with PD-L1 promoter (Fig. 1) [31]. Hence, 
it is still extremely challenging in elucidating mechanism 
about regulating PD-L1 expression, mediating immune 
escape and reacting to immune checkpoint inhibitors in 
EBVaGC.

EBV-encoded BART11 or BART17-3p target the 
transcription of FOXP1 or PBRM1, resulting in tran-
scriptional repression and downregulation of their 
expression. PBRM1 forms the PBAF complex and inter-
acts with FOXP1 to inhibit the PD-L1 enhancer, leading 
to the downregulation of PD-L1 expression and pro-
moting immune escape in tumors; The EBV-encoded 
miR-BART5-5p directly targets PIAS3, leading to the 
downregulation of PIAS3 protein levels and subsequent 
activation of STAT3. Phosphorylated STAT3 translocates 
into the cell nucleus and promotes the transcription of 
the PD-L1 gene, resulting in the upregulation of PD-L1 
levels; Upon IFNγ stimulation, EBNA1 upregulates 
JAK2 expression and activates the JAK2/STAT1/IRF-1 
signaling pathway, enhancing PD-L1 expression; EBV-
encoded circBART2.2 upregulates PD-L1 expression by 
facilitating the binding of IRF3 and NF-κB to the PD-L1 
promoter.
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Helicobacter pylori (H. pylori)
H. pylori is a gram-negative, microaerophilic, and flagel-
lated bacteria, and is also major cause of GC, especially 
for 90% non-cardia GC [32, 33]. Recently, Paul et al. 
found that H. pylori seropositivity decreases the effec-
tiveness of anti-CTLA4/PD-L1 combination therapy in 
clinical cohorts of colon cancer and non-small cell lung 
cancer [34].

In H. pylori -infected gastric tissue, high levels of 
PD-L1 expression are positively correlated with the pro-
gression of pre-cancerous gastric lesions and GC [35–
37]. Cytotoxin-associated gene A (CagA), a virulence 
factor of Helicobacter pylori, plays a pivotal role in the 
carcinogenic process of GC by activating tumor signaling 

pathways [38]. CagA can activate AKT and ERK to phos-
phorylate human double minute-2 (HDM2), leading to 
the dissociation of the HDM2-p53 protein complex. This 
activation also triggers HDM2 and ARF-BP1 E3 pro-
tein ligase, thereby promoting the rapid degradation of 
the p53 protein [39]. Meanwhile, p53 can promote the 
expression of miR-34a, while simultaneously suppress-
ing the expression of GC cell-derived exosomes (GC-Ex) 
with PD-L1. Thus CagA promotes immune evasion in 
GC via the p53-miR-34a-PD-L1 signaling axis, thereby 
inhibiting the proliferation of CD8 + T cells and cytokine 
secretion (Fig. 2) [40].

Fig. 1  EBV involves in regulating the PD-L1 expression and immune escape
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H. pylori-generated CagA enters GC cells, downregu-
lates p53 levels to reduce miR-34a levels, promotes the 
secretion of GX-EX carrying PD-L1 into the extracellular 
milieu, facilitating immune evasion in GC, inhibiting the 
proliferation of CD8 + T cells and cytokine secretion.

However, there has been limited research investigat-
ing the role of H. pylori infection in carcinogenesis via 
regulating PD-L1. Previous investigations have largely 
focused on how H. pylori-induced gastritis and pre-can-
cerous lesions promote PD-L1 expression. Thus, we will 
review some of the key findings from the studies to pro-
pose the potential mechanistic role of this pathway in the 
development of GC.

H. pylori infection-induced inflammation elicits a 
PD-L1 response, distinct from non-infectious chronic 
inflammation, which inhibits the activity of recruited T 
cells, thereby promoting immune evasion and exacerbat-
ing the infection [41]. The establishment and colonization 
of H. pylori infection rely on a crucial virulence factor 
known as urease. This multimeric enzyme is composed 
of 12 urea molecules and UreB heterodimers, which 
plays a vital role not only in the initial establishment of 
infection but also in the maintenance of chronic infec-
tion [42]. The interaction between UreB and Myh9 on the 
macrophage membrane reduces autophosphorylation of 
GCN2, enhancing the intracellular amino acid pool and 
activating downstream mTORC1, leading to upregula-
tion of S6K phosphorylation. Ultimately, this results 
in the expression of PD-L1 on macrophages, which 
serves to inhibit the activation of CD8 + T cells [43]. H. 
pylori-infection also leads to the activation and aggrega-
tion of eosinophils in the microenvironment. However, 
eosinophils show high levels of PD-L1 expression in this 

bacterial infection, which to some extent counteracts the 
eosinophil-driven T cell suppression (Fig. 3) [44].

Research using mouse models has revealed that H. 
pylori induces the activation of STAT1 and the expres-
sion of PD-L1 within gastric epithelial cells through an 
immune cell-dependent mechanism. This activation 
can impede immune surveillance of the gastric mucosa, 
potentially contributing to the progression of precancer-
ous lesions to GC [45]. Meanwhile, H. pylori infection 
activates STAT3 in dendritic cells (DCs), impairing their 
maturation and suppressing the secretion of the pro-
inflammatory mediator IL-1β [46]. Additionally, H. pylori 
orchestrates the activity-induced tolerogenic program-
ming of DCs, enabling them to promote the peripheral 
conversion of regulatory T cells (Tregs) [47]. These effects 
ultimately facilitate H. pylori colonization and the estab-
lishment of an immunosuppressive microenvironment. 
And early evidence suggests that DCs exhibit elevated 
PD-L1 expression after H. pylori infection in vitro [48]. 
Recent studies have further demonstrated that H. pylori 
infection leads to the accumulation of PD-L1-expressing 
DCs in the gastric mucosa and submucosa of mice mod-
els [49]. During the initial phase of H. pylori infection, H. 
pylori triggers the upregulation of SOCS3 expression in 
DCs via the T4SS/TNFα/p38 signaling pathway, resulting 
in a reduction of PD-L1 expression. However, this effect 
is transient and is observed only during the early stages of 
infection. As the infection progresses, PD-L1 expression 
in DCs gradually increases [50]. In summary, multiple 
cell types exhibit heightened PD-L1 expression during H. 
pylori infection, enabling the bacterium’s prolonged colo-
nization and facilitating the transition from gastritis to 
cancer. Eradicating H. pylori can suppress PD-L1 expres-
sion, protect the gastric mucosa, and impede the progres-
sion of GC.

The UreB protein produced by H. pylori inter-
acts with the macrophage membrane receptor Myh9. 

Fig. 3  H. pylori infection increases PD-L1 expression in macrophage

 

Fig. 2  H. pylori infection increases PD-L1 expression in GC cell
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This interaction reduces GCN2 phosphorylation and 
increases the amino acid pool, which activates the down-
stream mTORC1 signaling pathway, resulting in upregu-
lation of PD-L1 expression.

Tumor microenvironment (TME)
TME is a complex and dynamic ecosystem consist-
ing of immune cells, fibroblasts, adipocytes, blood ves-
sels, neurons, extracellular matrix, and soluble products 
such as chemokines, cytokines, growth factors, and 
extracellular vesicles. This intricate network plays a cru-
cial role in tumor growth and progression [51]. During 
the initial stages of tumor development, a complex and 
bidirectional interaction between cancer cells and vari-
ous components of the TME is established to promote 
cancer survival, local invasion, and distant metastasis 
[52]. In detail, TME can be classified into three profile: 
the immune-inflamed phenotype, the immune-excluded 
phenotype, the immune-desert phenotype [53]. The 
immune-inflamed phenotype is characterized by the 
presence of CD4+ and CD8+ T cells in the tumor paren-
chyma, accompanied by myeloid and monocytic cells. 
The immune-excluded phenotype is marked by abun-
dant immune cells that are retained in the tumor stroma 
rather than penetrating the tumor parenchyma, while the 
immune-desert phenotype is characterized by a scarcity 
of T cells in both the parenchyma and tumor stroma. 
Clinical responses to anti-PD-L1/PD-1 therapy typi-
cally occur in patients exhibiting the immune-inflamed 
phenotype, characterized by a preexisting CD8 + T cell 
response to the tumor. In this phenotype, the regulation 
of anticancer immunity is often upheld through intra-
tumoral PD-L1 expression [54]. Tumor cells expressing 
high levels of PD-L1 in the TME enhance immunosup-
pressive activity by attenuating the cytotoxicity of T cells, 
monocytes, natural killer cells, and macrophages [55]. 
Additionally, other cell types within TME such as mac-
rophages, dendritic cells (DCs), activated T cells, and 
cancer-associated fibroblasts, also express PD-L1. These 
components collaborate to orchestrate an immunosup-
pressive microenvironment, aiding the tumor in evading 
immune detection and clearance [56].

Mesenchymal stem cells (MSCs)
Mesenchymal stem cells (MSCs) are a cohort of non-
hematopoietic cells that possess immune-modulating 
properties, self-renewal capacity, and multidifferential 
potential [57]. They have the ability to reprogram GC 
cells, leading to enhanced proliferation, migration, inva-
sion, and chemoresistance [58, 59]. Numakura et al. 
explored the correlation between the expression of spe-
cific MSC markers (CD73, CD90, and CD105) and the 
clinical pathological features of GC. They identified a 
significant association between CD105-positive cells and 

poor prognosis in GC, indicating that MSCs infiltration 
predicts unfavorable outcomes [60].

Li Sun’s team conducted a series of sequential studies 
to investigate the molecular mechanisms by which MSCs 
regulate tumor immune function. They initially discov-
ered that IL-8 derived from GC-derived mesenchymal 
stem cells (GCMSCs) could induce PD-L1 expression 
in GC cells. Recent studies have also identified that 
circ_0073453 derived from GCMSCs can regulate IL-8 
expression by acting as a sponge for miR-146a-5p [61]. 
IL-8 derived from GCMSCs binds to CXCR1/2 on the 
surface of GC cells, activating the STAT3 and mTOR sig-
naling pathways and upregulating c-Myc levels [62, 63]. 
The c-Myc is a transcription factor that regulates the 
expression of multiple gene involved in cell proliferation, 
growth, differentiation, and apoptosis [64]. It can tran-
scriptionally upregulate hexokinase 2 (HK2), phosphory-
lating HK2 and translocating it to the nucleus. HIF-1α is 
a transcription factor that plays a key role in regulating 
gene expression in response to hypoxia. It binds to spe-
cific sequences in the DNA called hypoxia-response ele-
ments (HREs) located in the promoters of target genes. 
When HIF-1α binds to these HREs, it recruits other 
coactivators and transcriptional machinery to initi-
ate gene transcription [65]. The nuclear translocation of 
HK2 forms transcriptional complexes with HIF-1α. This 
enhances the occupancy frequency of HIF-1α on the pro-
moters of PD-L1 that contain the established HIF-1α-
binding motif, resulting in an upregulated expression of 
PD-L1 [66]. MSCs can also secrete Hepatocyte Growth 
Factor (HGF) which is taken up by GC cells. In GC cells, 
the interaction between HGF and c-Met (mesenchymal-
epithelial transition factor) activates downstream signal-
ing pathways including Ras-Raf-MAPK and PI3K/AKT/
mTOR. This activation leads to the phosphorylation and 
activation of MAPKs, allowing them to translocate into 
the cell nucleus and modulate the expression of c-Myc 
[67, 68]. In conclusion, MSCs facilitate the upregulation 
of c-Myc expression in GC cells by secreting IL-8 and 
HGF, thereby enhancing the expression of PD-L1 in GC 
cells.

In GC cells, c-Myc exerts a stimulatory effect on the 
upregulation of glucose transporter genes (glucose trans-
porter Glut1, HK2, PKM2, LDHA, and PDK1), thereby 
facilitating a heightened metabolic breakdown of glu-
cose into tricarboxylic acids and pyruvate, culminating 
in the ultimate conversion to lactate [69]. Previous stud-
ies have demonstrated that lactate can induce activation 
of the NF-κB signaling pathway in MSCs. Additionally, 
it has been observed that lactate-primed MSCs pro-
mote migration, proliferation, and PD-L1 expression in 
GC cells [70]. Building on these findings, it is postulated 
that lactate may stimulate HGF secretion by activating 
the NF-κB signaling pathway in MSCs, thereby inducing 
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upregulation of c-Myc expression in GC cells(Fig.  4). 
However, concrete evidence supporting this hypothesis 
is currently lacking, highlighting a potential direction for 
future research.

Moreover, in vitro experiments and clinical sample 
tests have both shown that MSCs upregulating PD-L1 
in GC cells can lead to increased Rad51 expression [71]. 
Rad51 is a key protein involved in homologous recom-
bination, which is more active in cancer cells [72]. The 
enhancement of homologous recombination facilitates 
heightened recognition and response to double-strand 
breaks in GC cells, consequently diminishing the efficacy 
of cisplatin treatment [71].

In summary, MSCs can induce the upregulation of 
PD-L1 in GC cells via c-myc. Concurrently, as more GC 
cells evade the immune response, they generate higher 
levels of lactate, further stimulating MSC activity. This 
interaction highlights novel targets for immune check-
point blockade in GC therapy. Moreover, the elevated 
PD-L1 expression induced by MSCs in GC cells exac-
erbates resistance to therapies like cisplatin, potentially 
guiding the development of more efficacious combina-
tion treatments.

The secreted IL-8 by MSCs binds to CXCR1/2 on GC 
cells, activating downstream STAT3 and mTOR path-
ways, thereby increasing C-myc levels; The secreted HGF 
by MSCs binds to c-MET on GC cells, activating the 

Ras-Raf-MAPK and PI3K/AKT/mTOR pathways, lead-
ing to the activation of MAPKs and upregulation of the 
C-myc gene; C-myc binds to HIFa to activate the PD-L1 
gene, thereby increasing the expression of PD-L1.

Tumor-associated neutrophils (TANs)
Neutrophils, integral components of the myeloid lin-
eage, play pivotal roles in inflammation, tissue injury 
repair, and host defense against microbial invasion 
[73]. Recently, neutrophils have been implicated in the 
pathogenesis of various cancers, including GC, as they 
accumulate within the TME and foster an immunosup-
pressive and pro-tumor niche, thereby promoting can-
cer progression [74]. Neutrophils present in the TME, 
known as tumor-associated neutrophils (TANs), can 
exhibit either an anti-tumorigenic phenotype referred to 
as the “N1 phenotype” or a pro-tumorigenic phenotype 
known as the “N2 phenotype” [75, 76].

N2-TANs secrete a diverse array of pro-angiogenic fac-
tors, facilitating tumor angiogenesis, while also exert-
ing inhibitory effects on T cell and NK cell proliferation 
and function. Simultaneously, they attract regulatory T 
cells and macrophages, promoting tumor progression 
and metastasis [77–79]. In GC, various factors can influ-
ence neutrophil differentiation, with GC-Ex identified as 
promoting neutrophil polarization toward the N2 phe-
notype. In detail, GC-Ex can transport HMGB1 to neu-
trophils, thereby inducing N2 polarization of neutrophils 
through TLR4/NF-κB signaling transduction [80]. Shi 
et al. further elucidated that GC-Ex-mediated HMGB1 
transport can lead to the upregulation of PD-L1 expres-
sion on neutrophils via the STAT3 signaling pathway 
[81]. Additionally, Wang et al. discovered that GC cells 
can release granulocyte-macrophage colony-stimulating 
factor (GM-CSF), which activates neutrophils to induce 
PD-L1 expression via the JAK/STAT3 signaling pathway 
(Fig.  5) [74]. This PD-L1/PD-1 interaction subsequently 
results in the generation of N2-TANs that suppress T cell 
immunity. Moreover, tumor-activated neutrophils also 
contribute to the modulation of the antitumor immune 
response of natural killer (NK) cells through the PD-
L1-dependent cell-cell interaction mechanism [82].

In summary, under the influence of GC cells, there is 
an elevation in the expression of PD-L1 on TANs, con-
sequently promoting the generation of a greater propor-
tion of N2-type TANs. Treatment with PD-L1 targeting 
therapy may potentially halt or slow down this process, 
thereby regulating the ratio of N1 and N2 type cells, 
although further experimental validation is still required.

GC cells secrete GM-CSF and GC-EX containing 
HMGB1 to enter TANS cells, activating the STAT3 path-
way to increase the expression level of PD-L1; HMGB1 
can activate the TLR4/NF-κB signaling pathway, promot-
ing the differentiation into N2-TANs.Fig. 4  MSCs promotes immune escape of GC cell
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Tumor-associated macrophages (TAMs)
Macrophages are a versatile immune cell with diverse 
functions, including regulation of tissue homeostasis, 
defense against pathogens, and promotion of wound 
healing [83]. Macrophages residing within TME, also 
known as tumor-associated macrophages (TAMs), 
undergo differentiation into two distinct forms: M1 and 
M2.

Upon stimulation with inflammatory responses or 
microbial products such as lipopolysaccharides (LPS) and 
interferon-gamma (IFN-γ), TAMs can differentiate into 
the M1-like TAMs [84]. M1-like TAMs exhibit increased 
production of pro-inflammatory cytokines such as IL-12, 
IL-23, and TNF-α, thereby inhibiting tumorigenesis [85].

Additionally, TAMs can also differentiate into the M2 
phenotype in response to anti-inflammatory cytokines 
like IL-4, IL-10, and transforming growth factor-beta 
(TGF-β). M2-like TAMs secret more anti-inflammatory 
cytokines, such as IL-10 and transforming growth factor-
beta (TGF-β) [86]. They also express high levels of scav-
enger receptors, such as CD206 (mannose receptor), and 
secrete factors involved in tissue repair and remodeling. 
Importantly, M2-like TAMs play a pivotal role in immu-
nosuppressive and tumorigenic phenotypes [83]. And 
the decrease of M1 macrophages and the increase of M2 
macrophages in advanced tumors are markers of immu-
nosuppression [87].

In GC, the expression of PD-L1 is associated with mac-
rophages, and it shows a progressive increase with the 
density of macrophages [88]. Next, we will introduce the 
relationship between PD-L1 and macrophages in two 
parts.

M1-like TAMs
The dynamic interplay between PD-L1 and M1-like 
TAMs significantly influences anti-tumor immunity. 

M1-like TAMs recruit CD8 + T cells to eliminate GC 
cells through the CXCL9, CXCL10, CXCL11/CXCR3 
axis. Meanwhile, CXCL9, CXCL10, and CXCL11 can also 
upregulate the expression of PD-L1, enabling GC cells to 
evade CD8 + T cell-mediated cytotoxicity [89]. Addition-
ally, M1-like TAMs have been shown to secrete IL-6 and 
TNF-α, leading to the induction of PD-L1 expression 
through activating the NF-kB and STAT3 signaling path-
ways in GC cells (Fig. 6). And the elevated levels of IL-6 
and TNF-α are correlated with poor prognosis in GC 
[90]. Moreover, GC cell-derived CSF-2 promotes TAMs 
survival and polarization, ultimately leading to TAMs dif-
ferentiation towards M1-like TAMs [91]. And CSF-2 can 
also induce increased secretion of CXCL8, which con-
tributes to an immunosuppressive microenvironment 
via induction of PD-L1+ TAMs. Notably, higher levels 
of CXCL8+ macrophages and increased expression of 
PD-L1 are related to poor prognosis among patients with 
GC. However, it remains unclear about the mechanism 
CSF-2 promotes CXCL8 secretion and CXCL8 regulates 
PD-L1 expression [92]. Meanwhile, M1-like macrophage-
derived exosomes carrying miR-16-5p have been dem-
onstrated to inhibit PD-L1 expression and trigger T cell 
activation by promoting IL-2, TNF-α, and INF-γ expres-
sion, resulting to inhibition of GC [93]. The PD-L1/PD-1 
blockades serve as highly effective therapy for GC sub-
types characterized by abundant M1-type TAMs [89].

M1-like TAMs release IL-6 and TNF-α, activating the 
NF-kB and STAT3 signaling pathways in GC cells, result-
ing in increased PD-L1 expression.

M2-like TAMs
M2-like TAMs have been implicated in the TME due to 
their immunosuppressive and pro-tumorigenic prop-
erties. And GC patients exhibiting high infiltration of 
PD-L1 + and M2-like TAMs are associated with a poorer 

Fig. 5  GC induces an increase in PD-L1 expression in TANs
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prognosis [94]. Meanwhile, high stromal PD-L1 expres-
sion levels have been linked to higher intertumoral 
densities of M2-like TAMs [95]. M2-like TAMs, when 
secreting IL-10, have the capacity to impair the func-
tion of CD8 + T cells and foster the creation of a tumor 
immune escape microenvironment. Furthermore, 
within an environment characterized by high infiltra-
tion of IL-10 + TAMs, there is a noticeable increase in the 
prevalence of PD-L1-positive cells. This implies a poten-
tial contribution of IL-10 to the upregulation of PD-L1 
expression [96].

TAMs uptake lipids secreted by GC cells. This lipid 
accumulation prompts TAMs polarization towards the 
M2-like TAMs via activation of the PI3K-γ pathway. 
Meanwhile, M2-like TAMs with lipid accumulation ele-
vate PD-L1 expression, leading to the suppression of anti-
tumor T cell responses (Fig. 7) [97]. Selective inhibitors 
of PI3K-γ hold promise as a monotherapy or in combina-
tion with immune checkpoint blockade drugs for clinical 
trials in GC patients.

TAMs take up lipids released by GC, inducing their 
polarization towards M2-type TAMs through the PI3K-γ 
pathway, concomitant with upregulation of PD-L1 
expression.

Myeloid-derived suppressor cells (MDSCs)
Myeloid-derived suppressor cells (MDSCs) constitute a 
subset of myeloid cells that exhibit aberrant activation 

in pathological settings linked to diverse disease states, 
such as cancer, chronic inflammation, or stress. These 
cells play a critical role in promoting immune suppres-
sion, tumor angiogenesis, metastatic spread, and drug 
resistance, thereby driving the progression of cancer 
[98]. Clinically, the increased percentage of MDSCs is an 
independent risk factor for poor prognosis in GC [99]. 
Furthermore, the combination of PD-1 inhibitor and apa-
tinib modulates the tumor microenvironment, enhanc-
ing anti-tumor effects in mice with GC. This therapeutic 
combination significantly elevates the ratio of CD4 + T 
cells and CD8 + T cells in the TME, concurrently reduc-
ing the proportion of MDSCs. This immunomodulatory 
effect contributes to enhanced treatment effectiveness 
and improved survival outcomes for GC patients [100].

Li, H’s team found that GC-Ex with PD-L1 promotes 
the proliferation of MDSCs via the activation of the IL-6/
STAT3 pathway in a mice xenograft model [101]. And 
the overexpression of PD-L1 in GC also triggers the 
upregulation of chemokines like CXCL1 and osteopontin 
(Spp1), as demonstrated in mouse models [102]. CXCL1 
promotes the recruitment of neutrophils and facilitates 
the migration of polymorphonuclear MDSCs, while Spp1 
also contributes to MDSC recruitment and immunosup-
pressive activity [103]. In detail, there exists a positive 
feed-forward loop between CXCL1 and MDSCs. Poly-
morphonuclear MDSCs express S100A8 and S100A9, 
which are important members of the low molecular 
weight calcium-binding protein S100 family. S100A8/
A9 induce the expression of CXCL1 in GC cells via the 
TLR4/p38 MAPK/NF-κB pathway. The expression of 
CXCL1 by GC cells recruits MDSCs through the CXCL1/
CXCR2 axis. Additionally, MDSCs can contribute to 
CD8 + T cell exhaustion through the S100A8/A9-TLR4/
AKT/mTOR signaling pathway [104]. Moreover, GC 
patient serum-derived IL-6 and IL-8 activate and induce 
MDSCs to express arginase I via the PI3K-AKT signaling 

Fig. 7  GC induces an increase in PD-L1 expression in M2-like TAMs

 

Fig. 6  M1-like TAMs promotes immune escape of GC cell
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pathway, which in turn inhibits the activity of CD8 + T 
cells(Fig.  8) [105]. Recently, a PD- L1 targeting high- 
affinity natural killer (t- haNK) cell line was designed, 
which are specialized haNK cells engineered to target 
PD- L1 expressing tumor cells via CAR. Moreever, PD-
L1-t-hank cells also show high activity for lysing human 
MDSCs with high PD-L1 expression in vitro. However, 
there is no research on GC cells [106].

In summary, MDSCs not only contribute to GC pro-
gression by facilitating immune suppression and tumor 
angiogenesis but also intensify the immunosuppressive 
through positive feedback loops mediated by chemokines 
within GC cells highly expressing PD-L1.

GC-Ex with PD-L1 promoted MDSC expansion via 
activation of IL-6/STAT3 pathway. MDSCs produce 
S100A8/A9, which drives CXCL1 expression in GC cells 
through the TLR4/p38 MAPK/NF-κB pathway and con-
tributes to CD8 + T cell exhaustion via the TLR4/AKT/
mTOR cascade. These PD-L1-expressing GC cells secrete 
CXCL1 to promote MDSC migration. Upon receiving 
IL-6 and IL-8 from GC cells, MDSCs activate PI3K-AKT 
signaling to express arginase I, thereby suppressing T cell 
function.

Mast cells
Mast cells, a type of immune cell derived from 
CD34 + and CD117 + pluripotent stem cells in bone mar-
row, are widely distributed around various tissues includ-
ing epithelial cells, fibroblasts, blood and lymphatic 
vessels, and nerves. These cells are involved in diverse 
physiological and inflammatory processes including 
tumorigenesis [107]. The underlying mechanism could be 
attributed to a tumor-promoting microenvironment cre-
ated by GC tumors that leads to the recruitment of mast 
cells into the tumor bed via CXCL12-CXCR4 interac-
tion. Tumor-derived TNF-α activates the NF-κB pathway 
to induce PD-L1 expression on mast cells(Fig. 9). It also 
has been demonstrated that the accumulation of intratu-
moral mast cells is positively correlated with GC progres-
sion and poor clinical outcomes among patients [108].

The chemotaxis of mast cells into the GC microenvi-
ronment is facilitated by CXCL12-CXCR4 signaling, 
while tumor-derived TNF-α activates the NF-κB path-
way to up-regulate PD-L1 expression. In the GC setting, 
mast cells suppress T-cell proliferation and function in 
a PD-L1-dependent manner, thereby promoting GC 
progression.

Fig. 8  Interaction of MDSCs with GC Cells Leading to T Cell Suppression
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Tumor-associated fibroblasts (TAFs)
Tumor-associated fibroblasts (TAFs), found near pri-
mary and metastatic tumors, produce extracellular 
matrix components and remodeling enzymes, promot-
ing structural changes in the surrounding tissue that 
enhance tumor growth and metastasis [109]. Elevated 
expression of Lipoma preferred partner (LPP) protein in 
TAFs has been correlated with adverse prognosis in GC 
patients, while higher levels of PD-L1 expression were 
also observed in patients with increased LPP protein lev-
els [110]. Moreover, research has also revealed that IL-8 
originating from cancer-associated fibroblasts (CAFs) 
enhances the expression of PD-L1 in GC cells through 
the activation of the P38, JNK, and NF-κB pathways 
[111]. TAFs in the deep stroma exhibit high expression 
of Glypican-3, which are associated with poor prognosis 
and diminish the efficacy of PD-1/PD-L1 immune ther-
apy [112].

Other factors influencing PD-L1 expression
Autophagy
Autophagy is an evolutionarily conserved, complex 
catabolic process that contributes to maintaining cellu-
lar homeostasis by degrading cytoplasmic constituents. 
During autophagy, macromolecules and damaged or 
unnecessary organelles in the cytoplasm are delivered 
to lysosomes for breakdown by hydrolytic enzymes into 
amino acids, nucleotides, sugars, fatty acids, and ATP 
[113]. Studies have revealed that blockade of this crucial 
process results in p62/SQSTM1 accumulation and subse-
quent activation of NF-κB pathway, leading to prominent 
upregulation of programmed death-ligand 1 (PD-L1) in 
GC [114].

Lysine-specific histone demethylase 1 (LSD1)
LSD1, an evolutionarily conserved transcriptional core-
pressor, has been demonstrated to enhance the prolifera-
tion and metastasis of GC cells [115, 116]. Its expression 
negatively correlates with CD8 + T-cell recruitment and 
activation, leading to impaired anti-tumor immunity. In 

GC, LSD1 deletion reduces total cellular PD-L1 expres-
sion, decreasing exosome secretion containing PD-L1. 
These PD-L1-carrying exosomes directly inhibit T-cell 
activation and can be transferred to other cells, promot-
ing immune evasion [117]. Various LSD1 inhibitors have 
been developed in the laboratory, showing promise in 
enhancing T-cell-mediated tumor killing and suppressing 
tumor growth by inhibiting PD-L1 expression [118, 119]. 
The relationship between LSD1 and PD-L1 in shaping 
the immune microenvironment of GC underscores the 
potential for targeted interventions to mitigate tumor-
associated immunosuppression.

Epithelial-mesenchymal transition (EMT)
EMT refers to the loss of polarity, tight junctions, and 
adhesion of epithelial cells induced by various factors, 
leading to the transformation of epithelial cells into inter-
stitial-like cells. EMT can enhance cancer cell metastatic 
properties by increasing mobility, invasion, and resis-
tance to apoptotic stimuli [120]. In TGFβ1-induced EMT 
tissues, TGFβ1 upregulated PD-L1 expression by activat-
ing NF-kB transcription. The expression of PD-L1 was 
significantly elevated in EMT-high cell lines compared 
to EMT-low cell lines [121]. It is worthy of exploration 
to utilize the interaction mechanisms between EMT and 
PD-L1 to enhance the effectiveness of immunotherapy 
and improve the treatment outcomes of GC patients.

Melatonin
Melatonin, as an important indoleamine hormone, plays 
a crucial role in regulating circadian rhythms, anti-
tumor activity, and immune function [122]. Melatonin 
has been demonstrated to inhibit the proliferation of GC 
cells through the modulation of the miR-16-5p against 
decapentaplegic homolog 3 pathway [123]. Additionally, 
recent studies have shown that melatonin suppresses the 
expression of PD-L1 in GC cells and TAMs. In GC, mela-
tonin increases the levels of miR-20b-5p、miR-17-5p 
and miR-93-5p in extracellular vesicles derived from GC 
cells, resulting in a downregulation of PD-L1 expres-
sion [124]. The PD-L1 in this process is conjectured, yet 
empirical validation is lacking at present. In an experi-
ment involving neck squamous cell carcinoma (HNSCC), 
the pretreatment of HNSCC cells with melatonin did not 
further enhance T cell activity when the PD-1/PD-L1 
signaling was blocked by anti-PD-L1 antibodies. This 
suggests that the anti-tumor effects of melatonin in this 
context are mainly mediated by reducing the expression 
levels of PD-L1 [121]. However, similar experimental evi-
dence has not been demonstrated in GC.

Fig. 9  Interaction of mast cells with GC Cells Leading to T Cell Suppression
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Conclusion and prospects
The TME is a complex ecosystem involving various com-
ponents such as surrounding cells, blood vessels, lym-
phatic vessels, and the extracellular matrix. In GC, a 
significant feature of the TME is the augmented expres-
sion of PD-L1 in multiple cell types, which impairs T 
cell function and promotes immune evasion. The initiat-
ing factors that lead to increased PD-L1 expression are 
diverse, primarily categorized as exogenous influences 
from pathogens and interactions among microenviron-
mental components during tumor progression.

In terms of pathogens, EBV and H. pylori have the 
capacity to induce GC. Even in the absence of tumor for-
mation, long-term infection can create an inflammatory 
environment that results in increased PD-L1 expression, 
fostering an immune-suppressive microenvironment. 
During the onset and development of tumors, both EBV 
and H. pylori exhibit unique mechanisms that elevate 
PD-L1 expression in GC cells and other cells within the 
microenvironment. These mechanisms involve multiple 
signaling pathways and interactions between various cell 
types. Blocking a single pathway may not suffice, as other 
pathways may still lead to increased PD-L1 expression in 
the TME. Thus, the best approach for addressing PD-L1 
expression induced by these pathogens is the eradication 
of the infectious agents.

Apart from exogenous factors like pathogens, interac-
tions between cells within the GC-TME also contribute 
to increased PD-L1 expression. For instance, MSCs and 
M1-like TAMs can induce the upregulation of PD-L1 in 
GC cells. Mast cells and TANs, influenced by GC cells, 
also exhibit increased PD-L1 expression. Additionally, 
TANs and TAMs, possessing both pro-tumorigenic and 
anti-tumorigenic phenotypes, tend to differentiate more 
into pro-tumorigenic phenotypes and express PD-L1 
within the TME. Interestingly, despite their anti-tumor-
igenic phenotype, M1-like TAMs can also elevate PD-L1 
expression in GC cells, potentially indicating a mecha-
nism by which the TME counteracts their tumor-sup-
pressive functions.

The elevation of PD-L1 expression is a progres-
sive phenomenon within the TME over time. The body 
employs immune mechanisms to combat tumor growth, 
while TME generate PD-L1 to counteract this immune 
response. Clarifying the mechanisms that lead to elevated 
PD-L1 expression in various cells presents an opportu-
nity to identify effective targets for inhibiting or reducing 
PD-L1 levels in the TME.
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