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Serotonin regulates in a cell‑type specific 
manner light‑evoked response and synaptic 
activity in mouse retinal ganglion cells
Claudia Di Berardino1,2,3, Sebastián F. Estay1,2, Alejandro Alcaino1,2 and Andrés E. Chávez2*    

Abstract 

Background  Serotonin (5-HT) is known to be synthesized and accumulated in the vertebrate retina 
through the 5-HT transporter, SERT. While manipulation of the serotonergic system has been shown to impact visual 
processing, the role of 5-HT and SERT as modulators of retinal synaptic function remains poorly understood.

Results  Using mouse retinal slices, we show that acute application of 5-HT produces a cell-type specific reduction 
in light-evoked excitatory responses (L-EPSC) in ON–OFF retinal ganglion cells (RGCs), but not in ON RGCs. Similarly, 
increasing 5-HT tone by acute application of citalopram, a selective 5-HT reuptake inhibitor, also reduces L-EPSC 
in ON–OFF RGCs while not affecting ON RGCs. Importantly, citalopram-mediated reduction of L-EPSC was absent in 
ON–OFF RGCs recorded from SERT null retina, highlighting the role of SERT in regulating light-evoked responses 
in RGCs. The effects of both exogenous and endogenous 5-HT on L-EPSC in ON–OFF RGCs are likely due to a presyn-
aptic reduction in excitatory synaptic strength as 5-HT and citalopram reduced the frequency but not the amplitude 
of spontaneous excitatory currents (sEPSCs) in ON–OFF RGCs. Moreover, 5-HT and citalopram had no effect on cur-
rents elicited by the direct activation of postsynaptic receptors in RGCs by brief application of glutamate in the inner 
retina.

Conclusions  Altogether these findings indicate that 5-HT modulates excitatory inputs onto RGCs in a cell-type 
specific manner and highlight that in the adult mouse retina, 5-HT-mediated effects onto RGCs are tightly controlled 
by the 5-HT transporter SERT.

Keywords  Serotonin transporter, Synaptic transmission, Retinal ganglion cells, Visual processing, Vision

Introduction
Serotonin (5-hydroxytryptamine, 5-HT), by regulating 
synaptic function and neuronal excitability throughout 
the central nervous system, plays an important role in 
cognitive and sensory functions [1, 2]. In the mamma-
lian retina, all the components required for serotoner-
gic regulation of neuronal function have been reported 
[3], including the enzymes necessary for 5-HT produc-
tion (tryptophan hydroxylase, TPH) and degradation 
(monoamine oxidase, MAO), the vesicular monoam-
ine transporter (VMAT2) required for its accumula-
tion in synaptic vesicles, the 5-HT transporter (SERT) 
critical for its reuptake and depending on the species, 
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including humans, different 5-HT receptor (5-HTR) 
subtypes distributed in distinct synaptic layers and 
cell types [3–11]. Accordingly, photoreceptors and 
amacrine cells can locally synthesize 5-HT, and a sub-
set of bipolar and amacrine cells actively accumulate 
it [12–18]. Moreover, the evidence that the inner ret-
ina is innervated by serotonergic retinopetal axons 
originating in the dorsal raphe nuclei [19–22] that 
might also release 5-HT in the retinal circuit further 
underscores a role for the serotonergic system in reti-
nal visual function. However, little is known about the 
cellular mechanisms underlying 5-HT-mediated neu-
romodulation of retinal synapses and the functional 
implications of such modulation in visual responses.

Early electrophysiological evidence from the cat and 
rabbit retinas demonstrated that exogenous applica-
tion of either 5-HT or selective 5-HTR agonists and 
antagonists can modify light-evoked responses and 
spontaneous activity in some types of retinal ganglion 
cells (RGCs) [23–26]. More recently, in the mouse ret-
ina, the 5-HT2C receptor subtype has been suggested 
to be necessary for RGC responses to patterned visual 
stimuli [27] and in rats, 5-HT1AR has been shown to 
regulate both excitatory and inhibitory neurotransmit-
ter release onto RGCs in a chronic glaucoma model 
[28, 29], further supporting the idea that 5-HT through 
different receptor subtypes can regulate RGC activity 
in the vertebrate retina. At synaptic sites, the activity 
of 5-HT and its receptors is tightly controlled by SERT, 
a plasma membrane transporter primarily responsible 
for reuptaking 5-HT from the synaptic cleft back into 
neurons and glia, thereby terminating the physiologi-
cal action of 5-HT at the synapse [30]. In the verte-
brate retina, SERT has been reported to be expressed 
in a subset of bipolar and amacrine cells that accumu-
late 5-HT [15] and in some RGCs [31, 32], where it has 
been suggested to play a role in the correct develop-
ment of RGCs axonal projections [33]. However, the 
contribution of SERT to 5-HT-mediated modulation 
of synaptic function and visual response in adult RGCs 
remains unknown.

To address this question, we investigated how 
increasing 5-HT levels either by acute application of 
5-HT or pharmacological blockade of SERT in mouse 
retinal slices impacts light-evoked excitatory response 
and spontaneous excitatory synaptic transmission in 
different types of RGCs. Altogether our results reveal 
a cell-type specific regulation by 5-HT, highlighting a 
presynaptic mechanism of action and the role of SERT 
in regulating excitatory synaptic strength in the inner 
retina.

Material and methods
Animals
Experiments were conducted using dim-light adapted 
retinal slices obtained from C57BL/6  J wild type (WT) 
and homozygous SERT knock-out (KO) mice [34] 
between postnatal day (P) 30 and P50 of either sex. Ani-
mals were housed at ~ 20  °C with ad  libitum access to 
food and water on a 12:12 h light/dark cycle. All experi-
mental procedures were performed in accordance with 
the bioethics regulations of the Chilean Research Council 
(ANID) and approved by the bioethics committee of the 
Universidad de Valparaíso, Chile (BEA159-20).

Ex vivo electrophysiology
Acute retinal slices (210  μm thick) were obtained using 
previously described methods [35–38]. Briefly, animals 
were euthanized following isoflurane anesthesia, eyes 
were enucleated, the cornea, lens and vitreous humor 
removed, and the retina isolated at room temperature 
(RT) in artificial cerebrospinal fluid (ACSF) composed 
by (in mM): 119 NaCl, 23 NaHCO3, 1,25 Na2HPO4, 2,5 
KCl, 2,5 CaCl2, 1,5 MgSO4, 10 glucose, 2 Na+-pyruvate 
and 2 Na+-lactate (290–295  mOsm). ACSF was con-
tinuously bubbled with carbogen (95% O2/5% CO2) and 
the pH was adjusted to 7.4 with NaOH. Retinas were 
embedded in low-melting agar (3% p/v low-melting aga-
rose in ACSF-HEPES, in mM: 119 NaCl, 24 HEPES, 1,25 
Na2HPO4, 2,5 KCl, 2,5 CaCl2, 1,5 MgSO4, pH 7,4) and 
cut on a Leica VT1200S vibratome. Retinal slices were 
maintained for a 30  min stabilization period in ACSF 
before being moved to the recording chamber beneath 
a 40X water immersion lens on a fixed-stage Nikon 
FN1 upright microscope, perfused at a rate of 1–2  mL/
min with ACSF at 29 ± 1  °C. For whole-cell patch-clamp 
recordings, RGCs (~ 80  µm deep) were visualized using 
infrared differential interference contrast and identified 
by the location of their somata in the ganglion cell layer. 
RGCs were discriminated from displaced amacrine cells 
for their axon, larger soma (diameter > 10 µm) and lower 
input resistance (< 600 MΩ) [39]. RGCs were differenti-
ated by their response to light stimulation (see Fig. 1) and 
AlexaFluor-488 hydrazide (10 µM) was also added to the 
internal solution to confirm typical RGC morphology and 
to distinguish ON, OFF and ON–OFF RGC subtypes, 
based on dendritic stratification in the inner plexiform 
layer (IPL) [40]. All experiments were conducted in mes-
opic conditions, at a mean illuminance of 10 lx.

Voltage-clamp recordings were performed with patch 
electrodes (4.5–6  MΩ) containing (in mM): 90 Cs-
methanesulfonate, 20 TEA (tetraethylammonium)-Cl, 10 
HEPES, 10 EGTA, 10 Na2-phosphocreatine, 2  Mg-ATP, 
0.3 Na-GTP, 0.01 AlexaFluor-488, adjusted to pH 7.35 
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with CsOH [39]. Spontaneous excitatory postsynaptic 
currents (sEPSCs) and light-evoked excitatory postsyn-
aptic currents (L-EPSCs) were recorded at −60 mV in the 
continuous presence of picrotoxin (PTX, 50 µM), strych-
nine (STRY, 3  µM) and tetrodotoxin (TTX, 0,5  µM) to 
block GABA- and glycine-mediated inhibitory trans-
mission and Na+ channels, respectively. L-EPSCs were 
evoked by a 500  ms light pulse (λ = 450  nm) delivered 
through the SOLA SE II light source (50% intensity) at an 
interval of 60 s, whereas pressure-induced release (“puff”) 
of L-glutamate (500 µM, 50 ms, 4–6 psi) in the IPL was 
used to elicit glutamate-induced currents in RGCs.

All currents were recorded using a Multiclamp 700B 
Amplifier (Molecular Devices), low pass filtered at 2 kHz 
and acquired at 10 kHz in a custom program written in 
Igor Pro 6.37 (WaveMetrics, Lake Oswego, USA). Series 
resistance (R was monitored continuously during the 
recording and cells with a variation greater than 20% 
were excluded from analysis. sEPSC recordings were ana-
lyzed offline using the event detection tool Mini Analysis 
Program (Synaptosoft). Traces were low-pass filtered at 
3 kHz to improve the signal-to-noise ratio and the thresh-
old amplitude for event detection was adjusted to ± 10 
pA, above the double of the root mean square noise level 
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Fig. 1  Exogenous serotonin reduces light-evoked response in ON–OFF but not in ON RGCs. A Effects of serotonin in ON RGC subtype. (i) 
Micrograph of a typical ON RGC filled with AlexaFluor488 (40x; scale bar = 10 µm; arrowhead indicates axon at the ganglion cell layer (GCL) 
border). INL, inner nuclear layer; IPL, inner plexiform layer. (ii) Representative traces of the L-EPSC evoked by a 0,5 s light pulse (black rectangle) 
under basal conditions (control, black) and after bath application of 5-HT (50 µM) for 10 min (gray). (iii) Time course and summarized graphs 
showing no changes in amplitude and synaptic charge (Q) of L-EPSC evoked in ON RGCs following 5-HT application. B Effects of serotonin in ON–
OFF RGC subtype. (i) Micrograph of a typical ON–OFF RGC (40x; scale bar = 10 µm; arrowhead indicates axon at the GCL border). (ii) Representative 
traces of the L-EPSC recorded in basal conditions (control, black) and after bath application of 5-HT (gray). (iii) Time course and summarized graphs 
showing the reduction induced by 5-HT in both the ON and OFF component of the L-EPSC. Statistical differences were assessed by paired t-test 
comparison of the means. *p < 0,05. (ON RGCs: n = 3 cells/3 animals, ON–OFF RGCs: n = 5 cells/5 animals)



Page 4 of 11Di Berardino et al. Biological Research           (2025) 58:11 

(3–4 pA). Events were subsequently checked manually 
for accuracy. For L-EPSCs and glutamate-induced cur-
rents peak amplitude, synaptic charge (i.e. area under the 
curve) and decay time were analyzed with NeuroMatic 
[41], in Igor Pro 6.37.

Statistical analysis
Unless otherwise indicated, data are presented as 
mean ± S.E.M, and statistical analysis was performed 
using Origin Pro 2018 (v9.5.1.195, OriginLab). To evalu-
ate the effects of 5-HT (50 µM), and the selective 5-HT 
reuptake inhibitor citalopram (10 µM), application onto 
excitatory currents recorded in RGCs, a paired t-test was 
performed, comparing the last 5 min in the presence of 
the pharmacological agent with a 10 min control condi-
tion. Statistical significance was reached when p < 0.05. 
The number of cells, animals, and statistical tests used in 
each experiment are indicated in the figure legend.

Results
5‑HT reduces light‑evoked response in RGCs in a cell‑type 
specific manner
To evaluate the impact of increased extracellular levels 
of 5-HT on retinal synaptic function, we recorded light-
evoked excitatory postsynaptic currents (L-EPSC) from 
RGCs (Vhold = −  60  mV) in acute mouse retinal slices. 
RGCs were classified into ON or ON–OFF subtypes 
based on their morphology and L-EPSC pattern (Fig. 1). 
While ON RGCs dendrites extend in the inner part of the 
IPL (Fig. 1A i) and exhibited an L-EPSC at the onset of 
light stimulation (Fig. 1A ii), ON–OFF RGCs have a bis-
tratified dendritic field, expanding also in the outer layer 
of the IPL (Fig. 1B i), and display a L-EPSC at both the 
onset and offset of the light stimulus (Fig.  1B ii). After 
identifying the RGC type, we recorded the L-EPSC under 
basal conditions for at least 10  min and next evaluated 
the effect of bath application of 5-HT (50  µM, 10  min). 
While 5-HT had no effect on the amplitude and synaptic 
charge of the L-EPSC recorded from ON RGCs (Fig. 1A 
iii; Supplementary Table 1), it strongly reduced both the 
ON and OFF components of the L-EPSC recorded from 
ON–OFF RGCs (Fig.  1B iii; Supplementary Table  1), 

indicating a cell-type specific modulation of L-EPSC in 
mouse RGCs by 5-HT.

Endogenous 5‑HT also reduces L‑EPSC in a cell‑type 
specific manner
To further determine whether 5-HT-mediated effect 
on L-EPSC is inducible by an endogenous increase in 
the tone of 5-HT in retinal slice, we bath applied the 
5-HT reuptake inhibitor citalopram (10 μM) for 10 min 
while L-EPSC were evoked in ON and ON–OFF RGCs 
(Fig. 2). While citalopram had no effect on the amplitude 
or synaptic charge of L-EPSC in ON RGCs (Fig.  2A), it 
significantly reduced both components of the L-EPSC 
in ON–OFF RGCs (Fig. 2B; Supplementary Table 1). To 
confirm that citalopram effect on L-EPSC was mediated 
by 5-HT reuptake blockade and the consequent increase 
in 5-HT extracellular levels, we recorded L-EPSC in 
RGCs from null SERT mice retinas (SERT KO; Fig.  2A, 
B). While typical L-EPSC patterns were elicited in both 
ON and ON–OFF RGCs from SERT KO retina (Fig. 2A, 
B), these responses remained unaltered after bath appli-
cation of citalopram (Fig. 2A, B; Supplementary Table 1), 
further confirming that citalopram-induced depression 
of L-EPSCs is entirely mediated through inhibition of 
SERT. Moreover, these results indicate that by control-
ling the levels of 5-HT in the retina, SERT impacts RGCs 
activity in a cell-type specific manner.

5‑HT‑mediated reduction of excitatory synaptic 
transmission onto ON–OFF RGCs is likely presynaptic
To further evaluate the potential cellular mechanism 
underlying this cell-type specific reduction of L-EPSC 
by 5-HT, we next recorded isolated (see methods) spon-
taneous excitatory postsynaptic currents (sEPSC) from 
ON and ON–OFF RGCs under basal conditions and after 
bath application of 5-HT (Fig.  3). Consistent with the 
cell-type specific effect mediated by 5-HT (Figs. 1, 2), we 
found that 5-HT had no effect on the frequency neither 
in the amplitude of sEPSCs in ON RGCs (Fig. 3A; Supple-
mentary Table 1), but significantly reduced the frequency 
without altering the amplitude of sEPSCs in ON–OFF 
RGCs (Fig.  3B; Supplementary Table  1). This change in 

Fig. 2  Endogenous serotonin reduces L-EPSC in ON–OFF but not in ON RGCs. A Left: Representative traces of the L-EPSCs evoked by a 0,5 s light 
pulse (black rectangle) in ON RGCs under basal conditions (control; black) and 10 min after bath application of citalopram (10 µM; gray) in wild 
type (WT; upper panels) and SERT KO retinas (lower panels). Right: Summarized graphs showing that citalopram had no effect on the amplitude 
and synaptic charge of L-EPSC in ON RGCs from WT and SERT KO mice. B Left: Representative traces of the L-EPSCs evoked by a 0,5 s light pulse 
(black rectangle) in ON–OFF RGCs in basal conditions (control; black) and 10 min after bath application of 10 µM citalopram (gray) in both WT 
(upper traces) and SERT KO retinas (lower traces). Right: Summary plots showing the reduction induced by citalopram in the ON (top panels) 
and OFF component (bottom panels) of the L-EPSC recorded from WT retinas, an effect that was absent in SERT KO retinas. Statistical differences 
were assessed by paired t-test comparison of the means. *p < 0,05; **p < 0,01; ***p < 0,001. (ON RGCs: WT n = 7 cells /6 animals; SERT KO: n = 5 cells/5 
animals; ON–OFF RGCs: WT n = 6 cells/6 animals and SERT KO n = 4 cells/4 animals)

(See figure on next page.)
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the frequency of sEPSC suggests a presynaptic mecha-
nism of action regulating excitatory neurotransmitter 
release onto ON–OFF RGCs. Similarly, we found that an 

endogenous increase in the tone of 5-HT by bath appli-
cation of citalopram also reduced the frequency of sEP-
SCs in ON–OFF RGCs without affecting their amplitude 
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(Fig. 4A; Supplementary Table 1), suggesting a presynap-
tic mechanism of action. Importantly, citalopram-medi-
ated reduction in the frequency of sEPSC was absent in 
ON–OFF RGCs recorded from SERT KO retinas (Fig. 4B; 
Supplementary Table 1), further demonstrating a role of 
SERT and 5-HT tone in regulating excitatory synapses 
onto ON–OFF RGCs in the inner retina.

To further confirm the presynaptic origin in the 5-HT- 
and citalopram-mediated reduction of excitatory synap-
tic strength onto ON–OFF RGCs, we bypassed excitatory 

neurotransmitter release by directly activating postsyn-
aptic glutamate receptors on RGC using focal pressure 
application of L-glutamate in the IPL (Fig. 5). Under this 
experimental condition, no changes in the amplitude 
or charge transfer were found in ON–OFF RGCs upon 
application of 5-HT (Fig.  5A; Supplementary Table  1) 
or citalopram (Fig.  5B; Supplementary Table  1). Alto-
gether, these results reveal that exogenous and endog-
enous 5-HT depress excitatory synaptic transmission 
onto RGCs, in a cell-type specific manner, highlighting a 
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potential presynaptic mechanism of action and a role of 
SERT in regulating 5-HT-mediated effect onto ON–OFF 
RGCs.

Discussion
Previous evidence indicates that the serotonergic system 
is implicated in the regulation of mammalian RGC func-
tion at various levels, including modulation of RGC activ-
ity [23–26], developmental influences [27, 32, 33] and 
neuroprotective roles [7, 28, 29], all of which are crucial 
for maintaining retinal function and visual processing. 
Accordingly, our study reveals that exogenous and endog-
enous increase in the levels of 5-HT produces a cell-type 
specific effect in mouse retina, impacting excitatory syn-
aptic strength of both spontaneous and light-evoked cur-
rents in ON–OFF, but not in ON RGCs. Although RGCs 
is a very heterogenous group of cells [42, 43], an observa-
tion that could explain the inherent variability of sponta-
neous activity across experiments (see Figs. 3B and 4B), 
our results clearly demonstrated a homogeneous effect of 
both 5-HT (Fig.  3B) and citalopram (Fig.  4B) to reduce 

excitatory inputs onto ON–OFF RGCs. Moreover, our 
data suggest that 5-HT-mediated reduction of excitatory 
synaptic strength is likely to be presynaptic (Figs.  3, 4 
and 5), open the possibility that activation of presynaptic 
5-HTRs that through different canonical signaling path-
ways, including decrease of cAMP levels, activation of 
GIRK-mediated hyperpolarization or by regulate voltage-
gated calcium channels [44], could regulate neurotrans-
mitter release at either photoreceptor terminals in the 
outer retina or at bipolar cell (BC) terminals in the inner 
retina. Although our electrophysiological study does not 
directly identify the specific 5-HTRs subtypes involved in 
this selective modulation, it does provide evidence that 
SERT, as in many brain synapses [45], controls 5-HT-
mediated effects on RGCs likely by regulating excitatory 
presynaptic neurotransmitter release. These findings 
highlight the crucial role of 5-HT and SERT in control-
ling retinal visual processing at the RGC level.

Increasing evidence points out that long-term treat-
ment with selective 5-HT reuptake inhibitors (SSRIs), 
that effectively block 5-HT reuptake by blocking SERT 
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and enhance 5-HT tone, can produce a range of adverse 
effects on vision including reduced visual acuity, night 
blindness, glaucoma and optic neuropathy [46, 47]. 
Although pharmacological agents, including citalopram 
and other SSRIs have recently been shown to act also at 
the neurotrophin receptor TrKB (Tropomyosin recep-
tor kinase B) [48], our results using SERT deficient reti-
nas (Figs. 2 and 4) strongly support that citalopram effect 
on light-evoked response and synaptic function is likely 
mediated through the blockade of SERT rather than TrkB 
receptors. Moreover, these results also suggest that alter-
native transporters, like organic cation transporters that 
could mediate 5-HT reuptake and some of the effect of 
SSRIs in the absence of SERT [49–51], are unlikely to 
play a role in regulating RGCs activity. While the exact 
distribution of SERT within the retina is still unclear, the 
cell-type specific effect of 5-HT (Fig.  1) and citalopram 
(Fig.  2) suggests that it might be expressed by neurons 
within the ON–OFF pathway. It is also possible that 
SERT, which is known to be expressed in RGCs during 
development [31, 33], is located on ON–OFF RGCs den-
drites and, therefore, throughout all subfields of the inner 
retina, where it may contribute to shape visual process-
ing at retinal level. Further experiments are required to 
unravel the precise localization of SERT and its impact 
on regulating retinal 5-HT tone to modulate retinal syn-
aptic function.

5‑HT‑mediated effects in mouse RGCs are cell‑type specific
Early evidence demonstrated that 5-HT suppresses both 
the spontaneous activity and light-evoked discharge 
of ON-center RGCs and enhances the activity of OFF-
center RGCs in cat retina [26]. Likewise, in the rabbit 
retina, bath application of 5-HT1A agonist or 5-HT2Rs 
antagonist reportedly reduces ON RGC response [24, 
25], whereas 5-HT3 agonist increases ON responses 
[23]. While this evidence suggests that 5-HT or differ-
ent 5-HTRs agents can regulate ON RGCs, our results in 
mouse retina reveal that 5-HT induces a cell-type specific 
depression of excitatory synaptic inputs and light-evoked 
response impacting selectively ON–OFF but not ON 
RGCs. While these differences could be due to the ani-
mal model and/or method used to evaluate 5-HT medi-
ated effects in acute retinal slices, we found that the ON 
component of the ON–OFF RGCs response was strongly 
reduced by increasing levels of 5-HT, suggesting that 
some type of ON BC that connect to ON–OFF RGCs, are 
different from those ON BC that make synaptic contact 
onto ON RGCs, and are sensitive to 5-HT. While multiple 
bipolar cell types converge onto a single RGC to convey 
different visual signals [52], distinct RGCs are contacted 
in different proportion by specific BC types [53]. For 

example, BC5R type has been shown to convey the ON 
signal mainly to RGCs of the ON–OFF class, while BC6 
preferentially contacts ON RGCs, including the ON sus-
tained (ON-s) alpha type and the intrinsic photosensi-
tive RGCs [53–56]. OFF-s and OFF-t alpha RGCs, on the 
other side, mainly receive excitatory synapses from OFF 
BC2 and 4, respectively, though they are contacted by all 
five OFF BC types [57]. Therefore, it is possible that just 
the inputs from ON BCs that preferentially target ON–
OFF RGCs, like BC5R, might be specifically regulated 
by 5-HT. It could also be possible that different synap-
tic boutons of the same BC are differentially regulated 
by 5-HT, providing a synapse-specific rather than a cell 
type-specific regulation. Additionally, by regulating syn-
aptic function between photoreceptor and BCs in the 
outer retina, 5-HT could also impact RGC response by 
regulating specific BC activity. Adding to this complex-
ity, it is noteworthy that, in our experimental conditions 
the effects of 5-HT and citalopram were studied in the 
presence of GABA and glycine receptor blockers, which 
enhance glutamate release. As 5-HT reportedly regulate 
inhibitory inputs in rat retina [28, 29], whether this cell-
type specific effect of 5-HT could be also observed in the 
absence of inhibitory blockers remains to be assessed. 
Further studies are required to test these possibilities and 
to clarify the exact mechanism underlying 5-HT-medi-
ated effects at excitatory retinal synapses, including the 
5-HTR subtype(s) involved in this modulation.

In summary, our results in retinal circuitry dem-
onstrated that the regulation of visual processing by 
5-HT can occur at all visual sensory stations. Besides 
its action in the visual cortex [58–61], where the inte-
gration of visual information occurs, recent evidence 
reported that 5-HT can also regulate RGC inputs to 
the thalamus [62] and our present results using acute 
retinal slices demonstrated that 5-HT, and in particu-
lar, SERT are important modulators of retinal synaptic 
function, ultimately indicating that the serotonergic 
system is transversally implicated in the neuromodula-
tion of visual processing. Further experiments would be 
helpful to clarify how and under which circumstances 
5-HT can control vision in health and disease.
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