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Cobalamin cbiP mutant shows decreased 
tolerance to low temperature and copper stress 
in Listeria monocytogenes
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Abstract 

Background: Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans. This pathogen 
activates multiple regulatory mechanisms in response to stress, and cobalamin biosynthesis might have a potential 
role in bacterial protection. Low temperature is a strategy used in the food industry to control bacteria proliferation; 
however, L. monocytogenes can grow in cold temperatures and overcome different stress conditions. In this study we 
selected L. monocytogenes List2‑2, a strain with high tolerance to the combination of low temperature + copper, to 
understand whether the cobalamin biosynthesis pathway is part of the tolerance mechanism to this stress condition. 
For this, we characterized the transcription level of three cobalamin biosynthesis‑related genes (cbiP, cbiB, and cysG) 
and the eutV gene, a transcriptional regulator encoding gene involved in ethanolamine metabolism, in L. monocy-
togenes strain List2‑2 growing simultaneously under two environmental stressors: low temperature (8 °C) + copper 
(0.5 mM of  CuSO4 ×  5H2O). In addition, the gene cbiP, which encodes an essential cobyric acid synthase required in 
the cobalamin pathway, was deleted by homologous recombination to evaluate the impact of this gene in L. monocy-
togenes tolerance to a low temperature (8 °C) + different copper concentrations.

Results: By analyzing the KEGG pathway database, twenty‑two genes were involved in the cobalamin biosynthesis 
pathway in L. monocytogenes List2‑2. The expression of genes cbiP, cbiB, and cysG, and eutV increased 6 h after the 
exposure to low temperature + copper. The cobalamin cbiP mutant strain List2‑2ΔcbiP showed less tolerance to low 
temperature + copper (3 mM) than the wild‑type L. monocytogenes List2‑2. The addition of cyanocobalamin (5 nM) to 
the medium reverted the phenotype observed in List2‑2ΔcbiP.

Conclusion: These results indicate that cobalamin biosynthesis is necessary for L. monocytogenes growth 
under stress and that the cbiP gene may play a role in the survival and growth of L. monocytogenes List2‑2 at low 
temperature + copper.
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Background
Foodborne diseases are a significant cause of morbid-
ity and mortality worldwide, and they are considered 
a major public health problem [1–3]. One of the most 
relevant foodborne pathogens is Listeria monocy-
togenes, a ubiquitous microorganism [4–6]. L. monocy-
togenes causes listeriosis in humans, a disease acquired 
through the ingestion of contaminated food. Listeriosis 
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can range from febrile gastroenteritis to severe invasive 
disease; it primarily affects neonates, the immunosup-
pressed, pregnant women, and the elderly, reaching 
mortality rates up to 30% [5, 7].

Listeria monocytogenes can survive and grow under 
diverse stress conditions; it can tolerate and adapt 
to high NaCl concentrations (≥ 10%), a wide range of 
pH (4.5–9.0), and several sanitizers [4, 8, 9]. L. mono-
cytogenes can grow at temperatures as low as − 1  °C 
[8]. The pathogen has been isolated from soil, silage, 
seawater, estuarine water, surface waters, and most 
importantly, food processing facilities and diverse food 
matrices [10–14]. The genetic characteristics of L. 
monocytogenes and the regulation of the transcriptional 
response are the main reasons why this bacterium sur-
vives in a wide range of environmental conditions [5, 
15, 16].

Cobalamin–vitamin B12—is a water-soluble vitamin 
synthesized by bacteria and archaea [17]. As a nutri-
ent, cobalamin acts as a cofactor for methyltransferases, 
isomerases, and dehalogenases, all enzymes involved in 
several essential biochemical processes such as carbon 
source fermentation and ribonucleotide reduction [18, 
19]. Cobalamin and its derivatives are involved in the 
fermentation of small molecules such as 1,2-propanediol 
and ethanolamine [20]. Cobalamin biosynthesis is a com-
plex process; more than thirty genes have been linked 
to its biosynthesis. Reports indicate that only a few bac-
teria and archaea can synthesize this molecule [21, 22]. 
De novo biosynthesis occurs as an anaerobic process in 
archaea and aerobic/anaerobic in bacteria [23, 24].

Ferrer et  al. described that cobalamin acts as an anti-
oxidant agent in Leptospirillum [25]. This iron-oxidizing 
bacterium belongs to the phylum Nitrospirae and grows 
in highly acidic and metal-loaded environments. When 
Leptospirillum was exposed for 1  h to oxidative stress 
conditions  (Fe2(SO4)3,  H2O2 or  K2CrO4), intracellular 
reactive oxygen species (ROS) increased significantly; 
however, when the bacterium’s growth medium was sup-
plemented with cobalamin before the stress, ROS lev-
els remained at basal level [25]. L. monocytogenes can 
also grow under different stress conditions, such as the 
acidic pH used as a strategy to control bacterial growth 
along the food chain [14]. It has been described that 
cobalamin, 1,2-propanediol, and ethanolamine may help 
L. monocytogenes survive in food and food production 
environments [26, 27]. A global transcriptional study of 
L. monocytogenes growing in vacuum-packed salmon at 
7  °C versus modified brain–heart infusion broth at 7  °C 
revealed that 149 genes changed their expression. Among 
the up-regulated genes (n = 88), twenty-six encoded pro-
teins related to cobalamin biosynthesis, ethanolamine 
metabolism, and 1,2-propanediol [28].

New alternatives to control L. monocytogenes in 
the food industry have been explored. One strategy is 
using copper, which has antibacterial activity on differ-
ent pathogenic bacteria [29–31]. Although copper has 
been described as an essential micronutrient that par-
ticipates as an enzyme cofactor [32, 33], its intracellu-
lar level is strictly regulated because its excess is toxic 
[34, 35]. We previously observed that the antibacterial 
effect of copper in L. monocytogenes was enhanced at 
low temperatures [35] and we determined that the min-
imal inhibitory concentration of copper at 37  °C was 
10–12 mM and at 8 °C was 4–6 mM of  CuSO4 ×  5H2O 
[36].

We analyzed the proliferation rate of different strains 
of L. monocytogenes and identified that the List2-2 strain 
had the highest growth rate at 8 °C [37]. This strain was 
the least affected by the combination of low tempera-
ture + copper according to their growth kinetic parame-
ters [36]. List2-2 was selected to evaluate the effect of the 
global transcriptional response to low temperature and 
copper. This strain modified the expression of 263 genes 
in response to a sub-inhibitory copper concentration 
(0.5  mM of  CuSO4 ×  5H2O) + low temperature (8  °C), 
including some genes encoding for proteins involved in 
the cobalamin biosynthesis pathway [36]. Based on this 
information, we hypothesized that cobalamin biosyn-
thesis was involved in the tolerance of L. monocytogenes 
List2-2 to the simultaneous exposure to low temperature 
(8  °C) + copper (0.5  mM) as a stress condition. In this 
study, we identified genes involved in cobalamin bio-
synthesis by analyzing the KEGG database and quanti-
fied the abundance of transcripts for genes associated 
with this pathway at 8 °C + copper over time. Finally, we 
mutated cbiP, which encodes for a cobyric acid synthase 
involved in the cobalamin biosynthesis, and studied the 
mutant’s phenotype.

Results
Genes involved in the cobalamin biosynthesis in L. 
monocytogenes List2‑2
All the elements described for cobalamin biosynthesis 
in L. monocytogenes EGD-e were identified in List2-2 
(Additional file  1: Fig. S1), and we identified 22 cobala-
min biosynthesis genes. All 22 genes showed 100% iden-
tity with those described in the L. monocytogenes EGD-e 
strain in the KEGG database. Two upstream genes of 
the cobalamin biosynthetic pathway were located in the 
same strand as an operon responsible for the metabolism 
of 1,2-propanediol. The transcriptional regulator encod-
ing gene eutV was also identified; this gene is responsible 
for the transcription of the ethanolamine operon and is 
regulated by cobalamin.
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Expression pattern of cobalamin‑related genes in L. 
monocytogenes under simultaneous exposure to low 
temperature + copper
We selected three genes involved in cobalamin biosyn-
thesis to evaluate their transcriptional response to low 
temperature (8 °C) + copper (0.5 mM) simultaneously at 
different times of exposure (Fig.  1). The genes lmo1201 
(cysG), lmo1208 (cbiP) and lmo1192 (cbiB) were chosen 
based on their genome location in the cobalamin biosyn-
thesis gene cluster and for being involved in the first and 
last stages of cobalamin biosynthesis (Additional file  1: 
Fig. S1). We observed that the relative expression of the 
genes did not change after 1 h of simultaneous exposure 
at 8 °C + copper (0.5 mM) compared to the control (8 °C, 
no copper). A significant increase in the relative expres-
sion was observed for the genes cysG, cbiP, and cbiB at 
6 h after copper exposure, but this expression decreased 
after 24  h of exposure at the level of 1  h. Interestingly, 
cbiP presented 4.5 times the abundance of transcripts 
of the control at 6  h. The gene eutV, a transcriptional 
regulator of ethanolamine metabolism, presented the 

same expression pattern observed for cbiP, with a signifi-
cant increase at 6 h of exposure and a reduction at 24 h 
(Fig. 1D).

L. monocytogenes List2‑2ΔcbiP showed lower tolerance 
to low temperature + copper
To evaluate the importance of genes encoding for cobala-
min biosynthesis in copper tolerance at low temperature, 
we deleted the gene cbiP by homologous recombination. 
As a result, List2-2ΔcbiP did not grow in agar media 
supplemented with 3  mM of copper at 8  °C, while the 
wild-type strain proliferated under the same condition 
(Fig. 2A). This result suggests that List2-2ΔcbiP is more 
sensitive to copper at low temperature than the wild-type 
strain on a solid medium. To evaluate the effect of cobal-
amin on the mutant, we supplemented the medium with 
cyanocobalamin (the active form of cobalamin). In this 
condition, List2-2ΔcbiP was able to grow at 3 mM copper 
cultured at 8 °C in the solid medium, demonstrating that 
5 nM of cyanocobalamin improved List2-2ΔcbiP survival 
cultured at low temperature + copper (Fig. 2B).

Fig. 1 Temporal expression pattern of cobalamin biosynthesis‑related genes in response to copper (0.5 mM) of L. monocytogenes List2‑2 growing at 
8 °C. A cysG, B cbiP, C cbiB, D eutV. Data were expressed as fold‑change between copper treated at different times and untreated (time zero without 
copper). Different letters indicate significant differences comparing different times (1, 6 and 24 h). P-value: < 0.05
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Discussion
One of the mechanisms that microorganisms use 
to respond to external stimuli is by modifying the 

expression of genes that encode proteins that allow them 
to adapt to new environments. The ability of L. mono-
cytogenes to multiply at low temperatures and tolerate 

Fig. 2 Effect of different copper concentrations on the growth of L. monocytogenes strain List2‑2 and List2‑2ΔcbiP cultured in TSBYe agar at 8 °C 
without (A) or with (B) cyanocobalamin 5 nM cyanocobalamin. The blue rectangle shows the differences in bacterial growth between List2‑2 
wild‑type and List2‑2ΔcbiP in agar media without cobalamin. The red rectangle shows the bacterial growth between List2‑2 wild‑type and 
List2‑2ΔcbiP in agar media with cobalamin
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different stress factors is a consequence of the diversity 
of genetic elements that it encodes in its genome and the 
regulation that controls the expression of these elements. 
Among these components are elements that code for 
cobalamin synthesis, a cofactor that participates in differ-
ent metabolic processes and plays a fundamental role in 
the pathogen’s survival under stress conditions [38].

Cobalamin is synthesized by certain bacteria and 
archaea, but not by plants or animals; in higher organ-
isms, the requirements of this vitamin are covered by 
interactions between microorganisms, plants, and ani-
mal tissues that are part of the food chain [38, 39]. It has 
been proposed that the evolution of the cyanocobalamin 
synthesis pathway allowed the fermentation of small mol-
ecules such as ethanolamine, 1,2-propanediol, and glyc-
erol in anaerobic environments [20]. De novo cobalamin 
synthesis occurs in bacteria and archaea, and some spe-
cies also may synthesize cobalamin by absorbing corri-
noids through the salvage pathway [40].

The genes involved in cobalamin biosynthesis in L. 
monocytogenes are conserved [26]. The genome sequence 
analysis of List 2-2 strain allowed us to identify the 22 
genes previously described involved in the anaerobic 
pathway of cobalamin biosynthesis. We have observed 
that the growth of L. monocytogenes in low temperature 
and copper activates mechanisms in response to stress 
that allow the bacterium to tolerate these conditions [36, 
37]. Recently, Ahn et  al. [41] observed that cobalamin 
biosynthesis acted as a protective mechanism against the 
oxidative stress generated by cold in Thioalkalivibrio spp. 
(haloalkaliphilic chemolithoautotrophic sulfur-oxidizing) 
growing at low temperature (10 °C). It has been reported 
that cobalamin biosynthesis genes increase their expres-
sion in response to arsenic, highlighting the antioxidant 
activity of this vitamin against metal stress [42].

Information about the relationship between cobalamin 
and the stress response in L. monocytogenes is limited. 
Studies reporting L. monocytogenes exposed to qua-
ternary ammonium compounds reported a significant 
increase in expression for cobalamin genes [43]. Similar 
effects were detected when L. monocytogenes was cold-
stressed under vacuum conditions [28]. Recently, tran-
scriptomics of L. monocytogenes co-cultured with cheese 
rind bacteria revealed that genes of the ethanolamine, 
1,2-propanediol, and cobalamin metabolism were up-
regulated, showing that these genes were fundamental in 
a competitive environment against other bacteria [27].

Previously we had observed that the transcriptional 
response of L. monocytogenes differed when stress fac-
tors were presented separately or together. In particular, 
exposure of List2-2 to low temperature + copper acti-
vated different cellular processes from those regulated 
by cold or copper [36]. In this study, we observed an 

increase in the expression of genes associated with the 
cobalamin pathway when L. monocytogenes was cultured 
at different times at low temperatures with copper in aer-
obic conditions. This observation could indicate that L. 
monocytogenes require synthesizing cobalamin under this 
stress condition. It has been reported that in either an 
aerobic or anaerobic condition, the cobalamin genes in 
L. monocytogenes may increase their relative expression 
in response to stress [27, 44]. Moreover, eutV expression 
increased in response to copper at low temperature with 
a similar pattern to what was observed for genes related 
to cobalamin synthesis. This result concurs with the role 
of cobalamin as a cofactor for the riboswitch Rli55, which 
controls the expression of the eut genes [45].

Recent reports indicate that the deletion of cobK, a 
gene that encodes a predicted precorrin-6A reductase, in 
Mycobacterium smegmatis affected cobalamin synthesis, 
suggesting that mutating one gene in the pathway affects 
cobalamin production [46]. Mutation of the gene cbiP 
(ΔcbiP) in Halobacterium reduced the archaeal growth 
in a medium deficient in corrinoids; however, when the 
medium was supplemented with cobyric acid, its growth 
ability was reestablished through reinstating the salvage 
pathway in the mutant strain [47].

CbiP is a synthase that catalyzes the synthesis of aden-
osyl-cobyric acid, a step that occurs almost at the end of 
the cobalamin biosynthesis pathway [48]. In this study, 
the gene cbiP of L. monocytogenes stressed by low tem-
perature and copper showed high expression levels after 
6 h at cold + copper. Deleting cbiP affected the growth of 
List-2-2 in a solid medium when bacteria were cultured at 
8 °C + copper. The mutant reduced its growth with 1 mM 
copper, and it was inhibited at 3  mM copper compared 
to the wild-type strain. Supplementing the medium with 
cobalamin supported List2-2ΔcbiP growth as observed in 
the wild-type strain. This implies that L. monocytogenes 
may be using cobalamin from the medium to supply the 
needs to survive stress.

Conclusions
These results suggest that cobalamin has a protective 
effect on the stress response of L. monocytogenes to cold 
and copper. Possible explanations may be that the anti-
oxidant capacity of cobalamin helps to manage stress or 
that the lack of cobalamin would affect the ability of L. 
monocytogenes to metabolize other sources of energy 
(such as ethanolamine), affecting the survival of L. mono-
cytogenes. Further studies to test these hypotheses and 
cobalamin concentrations in L. monocytogenes exposed 
to cold and copper will be helpful to elucidate the levels 
of vitamin required to protect against stress conditions.
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Methods
Strains and culture conditions
Listeria monocytogenes strain List2-2 (NCBI biosample 
ID: SAMN19838404) was isolated from seafood and is 
part of our repository. The isolate was confirmed as L. 
monocytogenes by PCR [49]. The tolerance of List2-2 to 
low temperature and copper had been previously stud-
ied [35–37]. For assays at low temperature, List2-2 was 
adapted as follows: the first day, a single colony was inoc-
ulated into Trypticase Soy Broth (BBL, Becton Dickinson, 
United States) containing 0.6% yeast extract (Oxoid, Bas-
ingstoke, United Kingdom); TSBYe and cultured at 37 °C 
overnight at 160  rpm. The next day, cold, fresh TSBYe 
broth was inoculated with L. monocytogenes and adjusted 
to an optical density of 0.05 at 600  nm  (OD600nm). The 
culture was grown at 8 °C (160 rpm) for 72 h at 160 rpm 
to adapt it to low temperatures. For assays at 37  °C, a 
single List2-2 colony was incubated in TSBYe at 37  °C 
(160 rpm) overnight. Microbiological assays were run in 
a biosafety level II-approved laboratory only accessible 
to trained individuals working with human foodborne 
pathogens.

Identification of genes involved in the cobalamin pathway
We selected the genes that encode for proteins involved 
in the cobalamin pathway using the information for L. 
monocytogenes EGD-e strain (ID: AL591824) reported 
in the KEGG PATHWAY database (Kyoto Encyclope-
dia of Genes and Genomes). Then we searched for these 
genes in the genome of L. monocytogenes List2-2 strain 
by alignment with the BLAST tool (http:// www. ncbi. nlm. 
nih. gov/ BLAST).

Gene expression assays
Three genes–lmo1201 (cysG), lmo1208 (cbiP), and 
lmo1192 (cbiB)—involved in cobalamin biosynthesis 
were selected considering their position in the cobala-
min biosynthesis gene cluster: the beginning, middle, 
and end. These genes encode proteins involved in the 
first and last stage of cobalamin biosynthesis, stages that 
operate under aerobic conditions (Additional file  1: Fig. 
S1). Moreover, the candidate genes were selected based 
on previous studies that have shown that the deletion of 
these genes affect cobalamin biosynthesis in other bac-
terial species [47, 50, 51]. We also evaluated the tran-
scriptional response of eutV, a transcriptional regulator 
of the ethanolamine operon. csoR (lmo1854), a gene that 
encodes a transcription factor that regulates Cu homeo-
stasis in L. monocytogenes, was used as a control to sense 
for copper exposure [36].

The expression level of these genes was evaluated 
in response to cold and copper. For this, a fresh TSBYe 
medium was inoculated with List2-2 adapted to low 

temperature and incubated at 8  °C/160  rpm to reach 
an early-log phase  (OD600nm: 0.4). Then the medium 
was supplemented with a sub-inhibitory concentration 
of copper  (CuSO4 ×  5H2O) 0.5  mM and incubated at 
8 °C/160 rpm under aerobic conditions. This copper con-
centration was used because it is non-lethal for L. mono-
cytogenes but significantly increases the copper cellular 
content [36]. Samples were taken at 0 (before adding cop-
per; the control condition), 1, 6, and 24 h for RNA extrac-
tion. RNA was extracted using the NucleoZOL reagent 
(Macherey–Nagel, Düren, Germany) according to the 
manufacturer’s recommendations. Complementary DNA 
(cDNA) synthesis was carried out from 1 µg of RNA with 
the reverse transcriptase enzyme MMLV-RT (Moloney 
Murine Leukemia Virus Reverse Transcriptase; Pro-
mega, Madison, WI, USA). Primers were designed with 
the Primer-BLAST tool using the genome of L. monocy-
togenes List2-2 as a template (Additional file 2: Table S1). 
SYBR Green Agilent Master Mix enzyme (Agilent Tech-
nologies, Santa Clara, CA, USA) was used for qPCR 
amplification according to the manufacturer’s instruc-
tions. The qPCR conditions were an initial denaturation 
at 95 °C for 10 min, followed by 40 cycles of denaturation 
(95 °C for 30 s), annealing (60 °C for 60 s), and extension 
(72  °C for 30  s). Real-time PCR (qPCR) reactions were 
performed in the Agilent AriaMx Real-Time PCR system 
in a final reaction volume of 10 μl.

The relative abundance level of each evaluated tran-
script was compared at time zero to the other times 
tested and was calculated using the  2−(ΔΔCt) method pro-
posed by Livak and Schmittgen [52]. The 16S rRNA gene 
(lmor04) was used as housekeeping [36, 53]. The qPCR 
reaction for each gene was performed in three biological 
replicates with two technical replicates each.

Generation of ΔcbiP mutant strain
cbiP was one of the genes that showed the highest expres-
sion levels in response to the stress condition in the 
study (8 °C + copper). It has been observed that its dele-
tion affects the synthesis of cobalamin in other microor-
ganisms [47]. Therefore, we evaluated the effect of the 
absence of a gene that encodes for CbiP in the tolerance 
to low temperature + copper in L. monocytogenes List2-
2. A cbiP mutant was created with homologous recom-
bination using a previously described protocol [54]. The 
vector pKSV7 was kindly provided by Dr. Rychli from the 
University of Veterinary Medicine, Vienna. The recom-
binant fragment (FP) was designed by SOE-PCR using 
primers detailed in Additional file 2: Table S1. Briefly, the 
fragment was inserted into the vector pKSV7 (pKSV7-
FP). Electrocompetent L. monocytogenes List2-2 cells 
were transformed by adding 3 µg of the vector pKSV7-FP 
using the following electroporation parameters: 2.5  kV, 

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST
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200 Ohms, 25 µF in a BioRad Gene Pulser X Cell elec-
troporator (Biorad, Hercules, CA, USA). Multiple pas-
sages of transformed cells were performed at 40  °C in 
Trypticase Soy Broth (TSBYe) supplemented with chlo-
ramphenicol (10 μg/mL) to induce vector insertion. Vec-
tor excision was induced by cell passages in BHI broth 
at 30  °C without antibiotics. Possible mutants were first 
screened by PCR (primers cbiP_L_F-LV and cbiP_R_R-
LV, Table  1), then the junction area was sequenced for 
confirmation.

Mutant strain evaluation: tolerance to low 
temperature + copper
Overnight cultures of wild-type and List2-2ΔcbiP were 
diluted ten-fold to analyze their growth in agar. A vol-
ume of 10 μL from the  10–4 to the  10–6 dilutions were 
inoculated on TSAYe agar plates supplemented with 1 
and 3 mM  CuSO4 ×  5H2O. Copper-free TSAYe agar was 
used as a control. A 10 μL volume from the  10–4 to  10–7 
dilutions was also inoculated in plates supplemented 
with 5 nM of cyanocobalamin (Merck KGaA, Darmstadt, 
Germany) to test the protective role of cyanocobalamin 
against the cold + copper stress on L. monocytogenes. All 
plates were incubated at 8 °C, and the growth was moni-
tored every day for 7 days. Each assay was performed in 
triplicate.

Statistical analysis
Statistical analysis was conducted in R project 4.0.2 [55]. 
Relative expression data were described as mean ± stand-
ard deviation and all comparisons were performed 
between times (1, 6, and 24 h). Non-parametric Kruskal–
Wallis and post hoc Dunn tests were used to analyze the 
statistical significance between experimental groups. 
P-values < 0.05 were considered statistically significant.
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