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Non‑coding RNAs and chromatin: key 
epigenetic factors from spermatogenesis 
to transgenerational inheritance
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Abstract 

Cellular fate and gene expression patterns are modulated by different epigenetic factors including non-coding RNAs 
(ncRNAs) and chromatin organization. Both factors are dynamic throughout male germ cell differentiation on the 
seminiferous tubule, despite the transcriptional inactivation in the last stages of spermatogenesis. Sperm maturation 
during the caput-to-cauda transit on the epididymis involves changes in chromatin organization and the soma-to-
germ line transference of ncRNAs that are essential to obtain a functional sperm for fertilization and embryo devel-
opment. Here, the male environment (diseases, drugs, mental stress) is crucial to modulate these epigenetic factors 
throughout sperm maturation, affecting the corresponding offspring. Paternal transgenerational inheritance has been 
directly related to sperm epigenetic changes, most of them associated with variations in the ncRNA content and chro-
matin marks. Our aim is to give an overview about how epigenetics, focused on ncRNAs and chromatin, is pivotal to 
understand spermatogenesis and sperm maturation, and how the male environment impacts the sperm epigenome 
modulating the offspring gene expression pattern.
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Introduction
Nuclear processes are highly regulated by macromolecu-
lar complexes composed mainly by proteins and nucleic 
acids. Every nucleus of human cells contains approxi-
mately two meters of DNA that is highly packaged in the 
form of chromatin in a compartment of 10–15 microme-
ters. The basic unit of chromatin, the nucleosome, allows 
this incredible level of compaction where a histone pro-
tein octamer (2xH2A, 2xH2B, 2xH3, 2xH4) wraps around 
146 DNA base pairs [1]. Besides DNA and protein com-
position, by the mid-1960 s RNA molecules were found 
as components of chromatin, which already suggested 

the important role of RNA in gene expression regulation 
[2].

Later, new experimental techniques allowed us to 
define RNAs as fundamental chromatin components. 
Through protein interactions or by directly interact-
ing with DNA, RNA molecules act as modulators of the 
integrity of nuclear compartments, chromatin accessibil-
ity, chromatin remodeler activity, and gene expression 
[3–7]. Furthermore, detailed analysis of these interac-
tions showed that RNA molecules can destabilize nucle-
osomes promoting the eviction of histones H2A-H2B, 
creating accessible regions probably associated with 
transcriptional activity [8]. From another perspective, 
nucleosomes stabilize RNA molecules by forming triple 
helices (ssRNA+dsDNA) on their entry-exit site, which 
was shown to be associated with transcriptional acti-
vation [9]. These results indicate the relevance of the 
RNA-chromatin association, which can be defined from 
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different angles, but always connected with gene expres-
sion regulation.

Both RNA and chromatin have been fully involved in 
physiological sperm production followed by their matu-
ration through the male tract. Germ cell differentiation 
into sperm generates different cellular intermediates 
(Fig. 1A), which confer some unique features to the tes-
tis. One example reflecting this distinctiveness is that the 
testicular transcriptome is far more complex compared 
to other organs like the brain or liver [10]. In the testis, 
germ cell differentiation involves the histone to prota-
mine exchange and transcriptional inactivation during 
spermiogenesis [11], producing immature sperm cells 
that are highly enriched on specific non-coding RNAs. 
Sperm maturation through the male reproductive tract 
takes place in the epididymis and is completed after sev-
eral molecular and biochemical changes. One of the most 
striking features characterizing sperm maturation is the 
variation in the RNA payload (Fig. 1B). All these physio-
logical modifications are necessary to obtain highly func-
tional spermatozoa for successful embryo developmental 
competence.

Due to advances in the comprehension of these pro-
cesses, paternal reproductive influence on offspring 
has gained attention in recent years. Studies focused 
on paternal transgenerational inheritance have shown 
the relevance of epigenetic changes on the paternal 
phenotype transference. This is mainly driven by the 
fact that the sperm epigenome escapes reprogram-
ming after fertilization [12]. Thus, environmental influ-
ences on the sperm epigenome impact the offspring in 
various alterations related to paternal nutrition, can-
cer, mental stress and cognitive disfunction. So far, all 
these modifications are mostly focused on differen-
tial DNA methylated regions, histone retention and 
enrichment/depletion of ncRNAs. Additionally, the 
sperm epigenome has also been related with infertility 
and assisted reproductive techniques (ARTs). Epige-
netic factors have been found to be accurate markers 
and useful biological tools to assess male infertility for 
pre-conception advice, sperm selection, and during 
in  vitro fertilization. On the other hand, the possible 
consequences of gamete handling on the epigenome of 
in vitro derived embryos are discussed.

Fig. 1    RNA content from germ cells to a mature sperm. A Inside the testis, germ cells differentiate from spermatogonia to immature sperm 
throughout the epithelium of the seminiferous tubules. B Immature testicular sperm (green sperm) is released from the tubules reaching the first 
third of the epididymis, the caput, where are still immature (yellow sperm). Next, sperm travels throughout the epididymis from the caput to the 
cauda to mature (red sperm). This passage involves a series of input clues from the epididymis, including the transference of small ncRNAs through 
the epididymosomes modifying the sperm RNA payload shown in the table
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In this review we want to give an overview of RNA and 
chromatin features and changes during spermatogenesis, 
and sperm passage throughout the epididymis for matu-
ration, with a final focus on environmentally induced 
epigenetic transgenerational inheritance. Understanding 
that RNA molecules and chromatin, or both associated, 
are essential components that define specific genomic 
organizations in sperm, is key to explain their role in con-
trolling gene expression and establishing specific pheno-
types in the offspring.

Epigenetic and transcriptional changes 
during spermatogenesis
Chromatin organization and transcriptional levels
The seminiferous tubule is organized as a complex strati-
fied epithelium where germ cells differentiate into sper-
matozoa in a process called spermatogenesis. For a more 
detailed explanation of this process please refer to [13]. 
During germ cell development, their genetic material is 
subjected to several changes including replacing the pro-
teins compacting the DNA. This spermatogenic process 
has been described in three consecutive phases: the first, 
where mitotic spermatogonia proliferate for self-renewal 
and give rise to spermatocytes; the second, which con-
tinues with meiotic spermatocyte division generating 
haploid spermatids; and the third called spermiogenesis, 
where several cytological and biochemical changes trans-
form spermatids into sperm [14].

Throughout the spermatogenic process, germ cell 
genetic material is packed by canonical and testis-specific 
histones until the transition from round to elongated 
spermatids [15]. At this stage, histone tail hyperacetyla-
tion relaxes the histone-DNA interactions allowing their 
exchange by transition proteins during nuclear conden-
sation [16]. Finally, transition proteins are replaced by 
highly-positive proteins, called protamines, which form 
tight toroidal complexes that pack around 85–90% of 
chromatin in secondary spermatids and will remain until 
sperm formation [15, 17].

All these changes highlight some exceptional features 
of the testis, given specifically by the germ cells devel-
oping inside the seminiferous tubule. The histone epige-
netic profiling of genes in mammalian germ cells showed 
that core poised genes (genes carrying bivalent active 
H3K4me3 and inactive H3K27me3 marks) are transcrip-
tionally dominant, controlling somatic gene expression 
patterns and embryonic development of diverse spe-
cies spanning 300 million years of evolution [18]. This 
suggests an evolutionary association between germ cell 
chromatin epigenetics, somatic gene expression modula-
tion, and the embryo gene expression program. Another 
example for the special features observed in testes arises 
from a large RNA-seq study comparing different tissues 

and revealing a higher transcriptional complexity for 
the testis compared to heart, brain, and liver, in mam-
mals and chicken [10]. This higher complexity level 
seems to be facilitated by open chromatin states at spe-
cific stages, observed as strong H3K4me2 marks on the 
transcriptional start sites (TSS) of meiotic spermato-
cytes and post-meiotic round spermatids, which explain 
the widespread transcriptome of coding and non-coding 
genes at these cell differentiation stages [10, 19]. Like-
wise, an assay for transposable-accessible chromatin 
with sequencing (ATAC-seq) and RNA-seq data showed 
a dynamic chromatin reorganization and transcrip-
tome diversity, respectively, following the germ cell dif-
ferentiation of accessible intergenic and intronic regions 
during the mitosis-to-meiosis transition. Here, de novo 
formation of accessible regions occurs in autosomes at 
the stage of pachytene spermatocytes, as well as on sex 
chromosomes during meiotic sex chromosome inactiva-
tion (MSCI). Later when round spermatids are gener-
ated, chromatin turns largely inaccessible without the 
occurrence of de novo accessible regions. Interestingly, at 
these advanced stages, genes that are not expressed show 
ATAC signals (namely accessible regions) corresponding 
with TSS [20]. These results suggest that already at the 
final stages of spermatogenesis, the chromatin organiza-
tion is being prepared, or primed, for the sperm role dur-
ing embryonic development as proposed earlier [21]. In 
the same line, chromosome conformation capture (3C) 
data from primate and mice germ cells revealed that 
chromatin is reorganized during the mitosis-to-meiosis 
step. Topologically associating domains (TADs), defined 
primarily in fibroblasts, were dissolved in pachytene 
spermatocytes and reestablished in round spermatids. 
Interestingly, a strong effect is mediated by the synap-
tonemal complex during meiosis on pachytene spermat-
ocytes, which shows a unique chromatin configuration 
that is tightly associated with transcriptional-correlated 
compartments [22]. This evidence has been supported 
by the reorganization of super-enhancers, most probably 
reflecting changes in chromatin configuration, converg-
ing to the dynamism of the transcriptome during mito-
sis-to-meiosis transition in developing germ cells [20].

The diversity of gene expression levels during sper-
matogenesis has been examined by single cell RNA-seq 
combined with bulk RNA-seq, showing a less complex 
transcriptome in the earlier steps of meiosis and the 
highest number of expressed genes at the prophase I level 
in diplotene spermatocytes. Thus, during early spermio-
genesis, canonical histones are atypically expressed dur-
ing round spermatid differentiation, while testis-specific 
histones and protamines are enriched in late sperma-
tids followed by the lowest number of expressed genes 
[23]. The morphological changes observed in elongating 
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spermatids therefore occur in consonance with histones’ 
post-translational modifications and the subsequent 
chromatin condensation leading to a decrease in the tran-
scriptional activity [23–25]. This latter effect was already 
described in the mid-1970  s via electron microscopes. 
Ribonuclear particle complexes of chromatin, RNA, and 
proteins were observed as transcriptionally active centers 
(beaded chromatin) in less differentiated cells, compared 
to the more differentiated ones like late spermatids, 
where chromatin was described as a “smooth” type 
restricting the transcription [26]. To overcome the last 
steps of spermiogenesis under low transcriptional levels, 
coding and non-coding transcripts are stored in special-
ized cytoplasmic granules called the chromatoid body, 
while genes coding for nuclear proteins that are essential 
for chromatin condensation and sperm motility are still 
being transcribed [23, 27]. Therefore, the germ cell differ-
entiation that takes place on the seminiferous epithelium 
from spermatogonia to sperm represents a highly com-
plex process that not only involves large morphological 
changes, but also an enormous degree of histone modi-
fications, chromatin reorganization and transcriptional 
dynamics in order to maintain genetic material integrity 
during the sperm production process.

Non‑coding RNAs on spermatogenic cells
Nuclear processes that modulate the chromatin com-
paction, transcriptional levels, and functional ncRNAs 
expression, are highly regulated at different stages of 
spermatogenesis. One class of ncRNAs described on 
spermatogenic cells are the endogenous small interfer-
ing RNAs (endo-siRNAs), which are produced from 
naturally-occurring double-strand RNA (dsRNA). The 
endo-siRNAs are one type of small non-coding RNAs 
(ncRNAs) involved in the RNA-interference (RNAi) 
mechanism to modulate gene expression at the post-
transcriptional level [28]. endo-siRNAs enrichment has 
been described on mouse testicular germ cells, with 
mRNAs as their main predicted targets, but intriguingly, 
they have one order of magnitude more targets at the 
genomic DNA level compared to the RNA transcripts 
[29]. This high degree of genomic complementarity sug-
gests an epigenetic role for endo-siRNAs, as has been 
reported in other species [30].

Another class of small ncRNAs involved in RNAi, but 
derived from single stranded RNA, which are abun-
dantly expressed in the germ lines, are the so called 
Piwi-interacting RNAs (piRNAs) [31]. piRNAs are 
known to protect germ cell genome integrity by the post-
transcriptional gene silencing of transposable element-
derived transcripts (TE’s) [32]. In addition to this direct 
effect over the TE’s, piRNAs have been involved in the 
de novo methylation of transposable elements and the 

maintenance of the repressive H3K9me3 mark in long 
interspersed nuclear elements, both via the recruitment 
of methyl transferases and other protein factors in male 
germ cells [33–37]. Therefore, it is not surprising to find 
piRNAs in the nucleus of murine pachytene spermato-
cytes, examined by Northern blot and Fluorescence 
In  situ Hybridization [38]. Throughout testicular devel-
opment and mouse spermatogenesis, piRNAs showed 
two stage-specific expression peaks. The first peak is 
described in pro-spermatogonia around birth, finding 
fetal and postnatal piRNAs. During this period, cells are 
reprogrammed to maintain them epigenetically uniform 
and generate their own parental imprinting by de novo 
methylation. The second peak is observed in pachytene 
spermatocytes. Here, the interaction between piRNAs 
piwi proteins is essential for spermatogenesis [39].

Additionally, another class of small ncRNAs, the 
microRNAs (miRNAs) has been detected in spermato-
cytes nuclei [38]. miRNAs were the first class of the 
small ncRNAs discovered and they derive from a stem 
loop precursor (dsRNA) that is processed by two endo-
nucleases (RNAse III enzymes), first in the nucleus and 
then in the cytoplasm generating a ∼22 nucleotides mol-
ecule [40]. miRNAs are then loaded to the RNA-induced 
silencing complex (RISC) where they interact with differ-
ent proteins of the Argonaute (Ago1-4) family, with only 
the “slicer” endonuclease activity of Ago2 responsible 
for the mRNA cleavage [41]. Compared to other spe-
cies, humans have evolutionary gained miRNA families 
through their duplication from the X chromosome, in 
combination with their escape from the transcriptional 
silencing triggered by the MSCI in spermatocytes and 
spermatids [42, 43]. Using knock-down mice for spe-
cific miRNAs it was found that the absence of the miR-
106b~25 cluster perturbs normal germ cell development. 
Although these mice were still fertile, the transcriptome 
of the early spermatogenic cells from spermatogonia to 
leptotene/zygotene spermatocytes was deregulated and 
perceived as a decrease in testis mass and epidydimal 
sperm content [44]. Using the same approach, the knock-
down of the miR-34/449 family generated infertile mice 
with abnormal spermatogenesis, along with scarce pres-
ence of elongating spermatids and spermatozoa on the 
seminiferous tubule [45]. miRNA profiling on the cells 
constituting the seminiferous epithelium have revealed 
testis-specific and germ cells stage-specific miRNAs 
expression in mammals [46–48]. In humans, stage-spe-
cific variations in the germ cells miRNA repertoire have 
been observed by comparing patients with normal sper-
matogenesis (azoospermic, OA) against patients with 
altered spermatogenesis (non-obstructive azoospermia, 
NOA). Interestingly, in the three germ cells analyzed 
(spermatogonia, pachytene spermatocytes, and round 
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spermatids), NOA patients with altered spermatogen-
esis showed an enormous change in small RNA content 
compared to OA patients. Small non-coding RNA dis-
tribution exhibited a dramatic increase of miRNAs, con-
comitant with the decrease of piRNAs percentage on 
NOA patients. These RNA biotype composition changes 
were also accompanied with changes in the expression 
(up- and down-regulation) of different miRNAs, which 
in turn generated changes in the expression of essential 
genes for spermatogenesis in NOA patients [49].

In addition, with the functional expression of miRNAs 
in germ cells, the Argonaute proteins and the miRNA 
maturation machinery are highly expressed in testis and 
male germ cells, specifically the endonuclease Drosha and 
Ago4 [50]. Ago4 and Ago3 proteins, along with X chro-
mosome-derived miRNAs, were localized to the sex body 
during prophase I of pachytene spermatocytes in wild 
type mice. Reduced testis weight and sperm production 
were observed in mice knock-down for Ago4, most prob-
ably explained by the increase in TUNEL-positive cells in 
the seminiferous epithelium. Moreover, increased Ago3 
expression was observed when Ago4 was not expressed, 
suggesting a possible compensation mechanism between 
them. Ago4 knock-down mice showed alterations in the 
formation of the sex body, the localization of key proteins 
that compose these structures, as well as in the deposi-
tion of silencing marks on sexual chromosomes, affect-
ing the MSCI process in pachytene spermatocytes. The 
loss of Ago4 also resulted in the downregulation of sev-
eral miRNAs and spermatogonia prematurely entering 
meiosis. All these results suggest an epigenetic role of 
Ago proteins and miRNAs in the transcriptional silenc-
ing process during spermatogenesis [51]. A defined role 
for nuclear miRNAs and Ago proteins on spermatogenic 
cells is still unexplored. Nevertheless, their influence in 
the deposition of chromatin marks on male germ cells is 
supported by the role of miRNAs and Ago4 as the effec-
tor protein for the RNA-dependent DNA methylation 
process in other human cells [52–54].

Hence, the spermatogenic process ends up with an 
immature sperm cell that is transcriptionally inactive, but 
with several chromatin accessible regions corresponding 
with TSS and loaded with a considerable number of small 
RNA molecules (Fig. 1B).

Fine tuning the sperm epigenome during epididymal 
transit
Non-functional spermatozoa released from testes fol-
low an essential caput-to-cauda transit through the 
epididymis, which takes 2–6 days in humans [55] and 
10–13 days in rodents, in order to mature, gain motil-
ity, and the capacity to fertilize an oocyte [56–58]. 
During this passage, sperm is subjected to different 

“epididymal-environmental clues” that aid in their 
maturation including RNAses, DNAses, proteases, gly-
can-modifying enzymes, changes in membrane lipid 
composition and protein phosphorylation [59–62]. This 
transit also involves the epididymis-to-sperm transfer-
ence of various molecules through vesicles that fuse to 
the sperm, called epididymosomes, which include sign-
aling molecules, proteins, and different small RNAs [63–
65]. This phenomenon modifies the spermatozoa small 
RNA content, described in the field as the “RNA payload”. 
Comparing the small RNA payload of mature sperm from 
the cauda epididymis versus immature testicular sperma-
tozoa, it was found a differential RNA-type enrichment 
depending on the sperm maturity levels. Mature cauda 
sperm was highly enriched in 29–34 nt RNAs, while 
the testicular sperm in 26–32 nt RNAs that correspond 
mainly to piRNAs [64, 66]. These 29–34 nt RNAs found 
in mature spermatozoa, were identical in their 5` ends, 
differing only on their 3` sequences and aligned to dif-
ferent transference RNA (tRNA) loci. Thus, by analyz-
ing the sequences against tRNA databases, all the small 
RNAs matched to the 5` halves of specific tRNAs with 
defined cleavage sites on the anticodon loop [66]. Inter-
estingly, all those tRNA-derived fragments (tRFs) found 
in mature spermatozoa, but not in testicular sperm, 
showed a high correlation with the small RNA content of 
epididymosomes, suggesting that epididymosomes were 
the source for this variation on the sperm RNA payload 
[64] (Fig. 1B). Further studies corroborated tRF transfer-
ence from the epididymal epithelial cells to spermato-
zoa through the epididymosomes, including the in vitro 
transferring of small RNAs to sperm using thiol(S)-linked 
alkylation for the metabolic sequencing of RNA (SLAM-
seq) on a genetically modified mouse that allows the tis-
sue-specific 4-thiouracil RNA-labeling [67–69].

Similarly, the RNA payload is also fine-tuned by the 
differential transference of miRNAs throughout the 
epididymis [70]. The sequencing of small RNAs focus-
ing the read alignment on miRNAs found that sperm 
obtained from different portions of the epididymis 
showed different miRNA signatures, where around 100 
miRNAs are lost, and the same number are acquired dur-
ing the caput to cauda transit (Fig. 1B). Moreover, prelim-
inary analysis of the miRNA sequencing data supported 
by the presence of the processing machinery suggested 
that a subset of miRNAs mature from the corresponding 
precursors during epididymal transit [70].

Sperm RNA content variations during caput-to-cauda 
transit have been functionally analyzed by sperm capac-
ity for subsequent embryo development. Caput-derived 
sperm embryos showed alterations during preimplan-
tation, most probably due to the overexpression of key 
regulatory (RNA- and chromatin-associated) factors. 
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Strikingly, this preimplantation failure was reverted by 
microinjecting miRNAs, but nor tRFs, purified from 
cauda epididymosomes along with caput-derived sperm 
during the Intracytoplasmic Sperm Injection (ICSI) pro-
cedure [71]. These findings therefore disclose some of the 
features that modulate the variations of the small RNA 
payload following maturation through the epididymis, 
which can be directly associated to fertilization, embryo 
development and appropriate implantation.

In addition to RNA payload changes, the passage 
throughout the epididymis also modifies sperm chro-
matin architecture and accessibility. During this phase, 
intra- and inter-protamine disulphide bonds are pro-
moted, increasing chromatin compaction levels to main-
tain and protect genetic material integrity [72, 73]. This 
general chromatin condensation process seems to be 
affected in mice knocked-down for the cannabinoid 
receptor CB1, where alterations in histone displacement 
and protamine disulphide bonds were described [74, 
75]. The mechanisms associated to CB1 receptor loss 
and altered chromatin condensation are associated to a 
decrease in intratesticular estrogen levels and histone H4 
acetylation [74]. Nevertheless, the factors and signals at 
the molecular level to understand the role of CB1 during 
the chromatin condensation throughout the epididymal 
maturation of the sperm need to be further investigated.

Sperm chromatin fragmentation is a natural phe-
nomenon occurring throughout sperm transit in the 
epididymis tract. During this process, defective sperm 
are eliminated in an apoptotic-like process strongly influ-
enced by the luminal epididymal (and vas deferens) fluids 
to degrade DNA [76–79].

Mature cauda sperm chromatin has been described 
to retain 2-15% histones compared to somatic cells, 
depending on the technical approach employed for 
determination [21, 24, 80–82]. Histone methylation 
mark occupancy defined by chromatin immunoprecipi-
tation sequencing (ChIP-Seq), revealed that most of the 
H3K4me2/3 marks are equally localized between sperm 
and somatic cells. As the exception, a considerable num-
ber of H3K4me2/3 sperm-specific sites were found that 
mostly reflect the transcriptional activity in the final 
stages of spermatogenesis [81]. At the chromatin acces-
sibility level, MNase-seq of mice sperm compared to 
embryonic stem cells showed nucleosomes occupancy 
over large gene-poor regions, with a small subset local-
ized over promoter for developmental regulators [80]. 
A similar methodology that sequenced only the mono-
nucleosomal fraction found that sperm nucleosomes are 
located mainly on centromere repeats and retrotranspo-
sons, with a particular depletion in regulatory elements 
like 5´- and 3´-untranslated regions (UTRs), TSS, and 
transcriptional termination sites (TTS) [82]. Additionally, 

MNase footprinting showed the first evidence for CTCF-
chromatin interaction, suggesting a role in sperm-chro-
matin architectural organization [80]. Further studies 
in mice, performing ATAC-seq combined with ChIP-
seq, showed that nucleosomes are precisely positioned 
flanking promoters containing active marks, specifi-
cally the 60% of sperm promoters containing H3K4me3, 
H3K27Ac, H3K9Ac [21]. In addition, when integrated 
with high-throughput chromosome conformation cap-
ture (HiCi) data, it has been found that CTCF and 
Cohesin organize the architecture of topologically associ-
ated domain (TADs) of the mice sperm genome [21, 83]. 
In humans, a different organization has been described 
for chromatin in sperm. Here, chromatin lack TADs and 
CTCF, and only after fertilization occurs, TADs start to 
be established and CTCF expressed, both specifically at 
the zygotic genome activation (ZGA) stage [84]. A subset 
of the sperm active promoters corresponds with genes 
actively transcribed on round spermatids, while the 
remaining active promoters, in addition to enhancers and 
super-enhancers, mirror the transcriptional activity of 
genes found in mouse embryonic stem cells (mESCs) and 
mouse embryonic fibroblasts (MEFs). This suggest that 
epididymis-cauda sperm harbor an intricate epigenome, 
which reflects the transcriptional state of immature states 
and is also primed for later stages during embryonic 
development modeling future expression patterns [21].

Sperm heads are composed mainly of a tiny cytoplas-
mic fraction, the acrosomal vesicle on the apical section, 
and the nucleus on the central region as the largest head 
compartment. This indicates that to a certain degree, 
chromatin and RNA molecules could be directly or 
indirectly associated in the sperm nucleus, as has been 
described extensively in somatic cells by different meth-
ods [85]. Non-radioactive in-situ hybridization found 
U1 and U2 small nuclear RNAs on epididymal sperm 
nuclei [86]. Sperm RNA-seq and a further classifica-
tion of the transcripts found a subset of RNAs that were 
primarily defined as chromatin-associated (caRNA) in 
humans [87, 88]. A differential RNA purification during 
aqueous-organic phase separation with commonly used 
phenol-guanidine isothiocyanate solution mixed with 
chloroform followed by sequencing identified two cat-
egories of RNA in mature cauda sperm. One category 
corresponds to the “free” RNA fraction purified from the 
aqueous phase, while the second category was obtained 
from the interphase after protein and DNA digestion, 
described as DNA-associated RNA. RNA sequencing 
showed that both fractions contain different subsets of 
coding and non-coding transcripts, where the main frac-
tion of DNA-associated RNAs was sensitive to RNAseH, 
suggesting the presence of ssRNA-ssDNA hybrids (R 
-Loops) that probably correspond to nascent transcripts 
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“frozen” during transcriptional activity throughout sper-
matogenesis [89]. These results provide a potential way 
to understand how both chromatin and RNA coexist and 
associate in the compacted sperm nucleus. Nevertheless, 
more studies are needed to clearly define the nature and 
molecular determinants for DNA-associated transcripts 
in mature sperm.

Molecular mechanisms for sperm epigenetic 
transgenerational inheritance
Epigenetics refers to changes in molecular factors and 
processes around the DNA that regulate genome activ-
ity independent of DNA sequence that are mitotically 
stable [90]. These changes include DNA methylation, 
histone modifications, non-coding RNAs, RNA methyla-
tion, and chromatin structure, which all together make 
up the epigenome [91]. Epigenetic transgenerational 
inheritance corresponds to the germline-mediated inher-
itance of epigenetic information between generations 
in the absence of continued direct environmental influ-
ences that leads to phenotypic variation [92, 93]. While 
there is a coordinated reprogramming between paternal 
and maternal genomes upon fertilization [94], sperm 
epigenetic changes escape the reprogramming process 
and are involved in the transmission of transgenerational 
phenotypes [12]. Therefore, paternal environmental fac-
tors before conception and during spermatogenesis can 
determine the health of the offspring in later life.

Nowadays, three main molecular mechanisms for envi-
ronmentally induced sperm epigenetic variations are 
described in scientific literature: (1) DNA methylated 
regions (DMRs), (2) Differential histone retention sites 
(DHRs), and (3) ncRNAs.

DNA methylation at cytosines adjacent to guanine 
(CpG) sites was the first established epigenetic mark. 
High density CpG islands and low density CpG regions, 
termed CpG deserts have important roles in genome 
activity regulation [95]. Sperm DMRs have been func-
tionally associated to signaling, transcription, metabo-
lism and receptors [12, 96, 97]. Differential DMRs are 
first induced during the fetal gonadal sex determination 
period [98]. DMRs later arise throughout the develop-
ment of pro-spermatogonia, spermatogonia and pachy-
tene spermatocytes [12].

In the same line, DHRs position in the genome cor-
relates with genes associated with cell signaling, metab-
olism and transcription, which may alter zygote and 
embryo development [90, 91, 99]. Rats exposed to agri-
cultural pesticides showed that DMRs have a positive 
correlation with DHRs and ncRNAs expression [100], 
suggesting both histone retention site guiding by DNA 
methylation and RNA-directed DNA methylation [101]. 
In addition, pericentric histone retention was found to 

be directed by nuclear RNAs in mature spermatozoa, 
specifically through the RNA-binding motif of the testis-
specific histone variant H2A.L.2 [102].

On the other side, different long non-coding RNAs 
(lncRNAs) have been found to be enriched in sperm 
compared to round spermatids. Interestingly, those lncR-
NAs seem to target transcripts of genes related to nucleic 
acid metabolism, protein modification, chromatin and 
histone modification, heterocycle compound metabolic, 
sperm function and spermatogenesis [103]. Similarly, 
a transgenic mouse model overexpressing the histone 
demethylase KDM1A showed that H3K4me3, but not 
H3K27me3, was almost completely retained after fertili-
zation, and therefore that sperm H3K4me3 marks can be 
transmitted transgenerationally [104]. All this evidence 
lead us to think about a complex and concerted interac-
tion between chromatin and ncRNAs in mature sperm, in 
order to control the embryonic gene expression program 
and the establishment of specific phenotypes in progeny.

An environmental factor that modifies offspring epi-
genomes, especially related to obesity, is paternal diet 
[105–107]. Using a high fat diet (HFD)-induced obesity 
mouse model, altered histone H3 occupancy was found 
in regulatory genes implicated in embryo developmen-
tal processes and differential H3K4me1 marks compared 
to control mice [108]. In humans, obese men present an 
altered sperm tsRNA content [109], while the up-reg-
ulation of sperm mir-19b is associated to men that ate 
a Western-style diet [110]. RNA-seq analyses of early 
embryos after the injection of sperm tsRNAs from a high 
fat diet-fed father revealed a decrease in the expression of 
metabolic regulation-related genes in both early embryos 
and the pancreatic islets of offspring [111]. In the same 
way, sub-optimal paternal nutrition (low protein diet) 
has a strong impact on offspring well-being by program-
ming cardiovascular function over successive generations 
[112].

Another inheritable effect driven by epigenetic changes 
in sperm was shown in mice knockout for the histone 
demethylase Kdm6a. Here, the deletion of this tumor 
suppressor increased the incidence of tumors in their 
wild type offspring. Knockout mice sperm showed higher 
levels of methylation in both H3K27 and DNA at specific 
loci. Interestingly, some of these DNA hypermethylated 
regions in sperm were also observed in somatic cells of 
the wild type offspring, probably perturbing gene expres-
sion programs that resulted in elevated tumor incidence 
in the progeny [113]. Another study analyzing the rel-
evance of sperm-derived transcripts during embryo 
development showed that sperm-specific transcripts are 
highly expressed during ZGA [114]. Sperm-specific lncR-
NAs enriched with H3K4me3 in their promoters were 
also found deregulated in different cancers, exhibiting 



Page 8 of 13Cheuquemán and Maldonado ﻿Biological Research           (2021) 54:41 

a direct correlation between their H3K4me3 promoter 
enrichment and increased expression in cancer. These 
results suggest the oncogenic properties of the sperm-
specific lncRNAs and its potential use as diagnostic and 
prognostic markers for several cancers [114]. As epige-
netic modifications are reversible, many drugs target-
ing epigenetic modifying proteins are frequently used in 
cancer treatment for males at reproductive age; however, 
its effects in germline epigenome and subsequent child 
health are limited [115].

Transgenerational inheritance has also been related to 
mental disease and cognitive function in offspring brains. 
Parental stress exposure influences the risk of stress reac-
tivity and post-traumatic stress disorder (PTSD) risk in 
subsequent generations, contributing to the developmen-
tal programming of the hypothalamic-pituitary-adrenal 
(HPA) stress axis [116]. A mouse model of restrain stress 
showed increased methylation levels in the promoter 
of Sfmbt2 gene in sperm, which led to the downregula-
tion of miR466b-3p in the liver cells of the offspring. 
This miRNA targets the 3´UTR of the gluconeogenic 
enzyme phosphoenolpyruvate carboxykinase (PEPCK) 
mRNA. Therefore, the decreased expression of this 
miRNA increases PEPCK levels and induces hyperglyce-
mia [117]. Consequently, an in silico analysis creating a 
model for transgenerational inheritance reinforced posi-
tive feedback for DNA methylation in the sperm Sfmbt2 
promoter as a possible mechanism to mediate parental 
psychological stress reprogramming in offspring [118]. 
Similarly, altered miRNAs content in response to enviro-
mental stress in early life is transmitted through sperm 
to their offspring. Moreover, injection of sperm RNAs 
from traumatized males into fertilized wild-type oocytes 
reproduced the behaviour and metabolic stress response 
phenotype in the resulting offspring [119]. In contrast, 
environmental enrichment leads to intergenerational 
inheritance of high cognitive abilities by sperm miRNAs, 
especially miRs 212/132, which enhances synaptic plas-
ticity and cognition in the next generation and supports 
the crucial role of physical exercise and cognitive train-
ing for preventing mental disorders [120]. Another inher-
ited cognitive defect associated with epigenetic changes 
is related to the increased risk of autism spectrum disor-
der (ASD) with paternal aging [121, 122]. Using a mouse 
model of paternal aging characterized by defective com-
munication, it was discovered that sperm from aged mice 
were hypomethylated compared to young mice, spe-
cifically in genes targeted by RE1-silencing transcription 
factor (REST) and the neuron-restrictive silencer factor 
(NRSF). Consequently, the expression analysis in the 
offspring showed an enrichment of those sperm hypo-
methylated REST/NRSF-targeted genes in developing 
brain cells. Offspring from aged fathers also presented 

precocious neurogenesis and reduced cortical thickness 
of the primary motor cortex, explaining the altered com-
munication [122].

Sperm epigenetic variations are directly associated to 
embryo development and ARTs. Sperm-borne miRNAs 
and endo-siRNAs are important to control transcrip-
tomic homeostasis in fertilized oocytes, zygotes, and 
two-cell embryos. sncRNA-deficient sperm displayed a 
significant reduction in embryo developmental poten-
tial, which could be rescued by injecting sperm-derived 
total or small RNAs into embryos during intracyto-
plasmic sperm injection (ICSI) [71, 123]. Accordingly, 
sperm RNAs enrichment might represent a novel way to 
improve fertility rates during gamete handling, in  vitro 
fertilization (IVF) or ICSI procedures.

By contrast, ARTs can induce epigenetic variation that 
might be transmitted to the next generation. Specific 
and functional epigenetic changes in DNA methylation 
and H3K4me3 patterns from in  vitro derived embryos 
demonstrate that the ICSI technique might interfere 
with processes associated with skeletal and immune sys-
tems in offspring [124]. This could be related to the fact 
that during ICSI sperm is artificially introduced into the 
oocyte avoiding natural sperm selection, and it is there-
fore not the “best biological” sperm in terms of function 
and quality which finally penetrates the oocyte. This rein-
forces the need for further research into sperm epige-
netics and transgenerational inheritance on subsequent 
in vitro derived embryos after ARTs.

In recent years, conventional sperm quality analy-
ses have tried to integrate new molecular biology tech-
niques to increase human fertility. However, these new 
assays are not used routinely. Clinical sperm evalua-
tions found that the epigenetic mark H3K4me2 is nega-
tively correlated with sperm concentration, motility and 
mitochondrial activity in humans, and has therefore 
been considered a marker for sperm quality assessment 
[125]. Similarly, phosphorylated serine 1 of H4 (HS1ph) 
has been suggested as a epigenetic marker for sperm 
maturity during spermatogenesis. HS1ph levels are sig-
nificantly decreased in healthy mature sperm nuclei, 
and high levels of this mark were closely associated with 
sperm immaturity and infertility [126]. Regarding early 
embryo quality, a specific sperm miRNA profile was 
described as a potential marker to screen high-quality 
sperm in order to improve IVF success rates. Sperm sam-
ples with high hsa-mir-191 expression had a higher fer-
tilization rate, blastocyst rate and high-quality embryo 
rate [127]. Patients with normal semen analyses but not 
capable of inducing a pregnancy have shown under-
expressed DNA repair genes (APLF, CYB5R4, ERCC4 and 
TNRFSF21) and apoptosis-modulating genes (MORC1, 
PIWIL1 and ZFAND6), with an inverse correlation with 
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age and DNA fragmentation [128]. In these patients, 16 
lncRNA genes were also completely downregulated, with 
most appearing to guide chemical modification of other 
RNAs, influence methylation, and modulate messenger 
RNA stability and translation [128]. In a similar biomedi-
cal model, boars with high quality semen parameters but 
lower fertility success have shown that most of the DMRs 
were hypermethylated on genes related to spermatogen-
esis, sperm function, fertilization and fertility/prolifi-
cacy. Additionally, they showed the same disregulation of 
sperm miR-153 that occurs in humans, affecting fertiliza-
tion and embryo rates after IVF [129].

Altogether, these data demonstrate that sperm epige-
netics is relevant for fertility, embryo development and 

transgenerational inheritance (Fig.  2). Understanding 
the epigenetics in reproduction will contribute to design 
rational therapeutic options [130], to accurately assess 
fertility status [131, 132], predict the impact of paren-
tal experiences [133] and lifestyle on epigenetic paternal 
transgenerational inheritance [134].

Conclusions
This literature review highlights the importance of regu-
latory ncRNAs, histone modifications and chromatin 
accessibility during spermatogenesis to obtain functional 
sperm and its implications on epigenetic paternal 
transgenerational inheritance.

Fig. 2    Environmental factors determining transgenerational epigenetic inheritance affecting offspring health. Sperm epigenome alterations 
due to environmental cues are transferred to the offspring. These inherited epigenetic signals can be useful biomarkers for disease diagnosis and 
treatment in preventive medicine for offspring. Paternal transgenerational epigenetic inheritance can be compensated by lifestyle and maternal 
nurture. Epigenetic analyses for sperm selection and in vitro culture enrichment with ncRNAs can be useful to improve fertility rates and embryo 
quality during ARTs
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